CHAPTER 3: Cyclic and convolution codes

Cyclic codes are of interest and importance because

- They posses rich algebraic structure that can be utilized in a variety of ways.
- They have extremely concise specifications.
- They can be efficiently implemented using simple shift registers.
- Many practically important codes are cyclic.

Convolution codes allow to encode streams od data (bits).

In order to specify a binary code with 2^{k} codewords of length n one may need to write down

$$
2^{k}
$$

codewords of length n.

In order to specify a linear binary code with 2^{k} codewords of length n it is sufficient to write down

$$
k
$$

codewords of length n .

In order to specify a binary cyclic code with 2^{k} codewords of length n it is sufficient to write down

1
codeword of length n.

BASIC DEFINITION AND EXAMPLES

Definition A code C is cyclic if

(i) C is a linear code;
(ii) any cyclic shift of a codeword is also a codeword, i.e. whenever $a_{0}, \ldots a_{n-1} \in C$, then also $a_{n-1} a_{0} \ldots a_{n-2} \in C$.
Example
(i) Code $C=\{000,101,011,110\}$ is cyclic.
(ii) Hamming code $\operatorname{Ham}(3,2)$: with the generator matrix
is equivalent to a cyclic code. $G=\left(\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right)$
(iii) The binary linear code $\{0000,1001,0110,1111\}$ is not a cyclic, but it is equivalent to a cyclic code.
(iv) Is Hamming code $\operatorname{Ham}(2,3)$ with the generator matrix

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 2
\end{array}\right)
$$

(a) cyclic?
(b) equivalent to a cyclic code?

FREQUENCY of CYCLIC CODES

Comparing with linear codes, the cyclic codes are quite scarce. For, example there are 11811 linear $(7,3)$ linear binary codes, but only two of them are cyclic.

Trivial cyclic codes. For any field F and any integer $n>=3$ there are always the following cyclic codes of length n over F :

- No-information code - code consisting of just one all-zero codeword.
- Repetition code - code consisting of codewords (a, a, \ldots, a) for $a \in F$.
- Single-parity-check code - code consisting of all codewords with parity 0 .
- No-parity code - code consisting of all codewords of length n

For some cases, for example for $n=19$ and $F=G F(2)$, the above four trivial cyclic codes are the only cyclic codes.

EXAMPLE of a CYCLIC CODE

The code with the generator matrix

$$
G=\left(\begin{array}{lllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right)
$$

has codewords

$$
\begin{array}{ccc}
c_{1}=1011100 & c_{2}=0101110 & c_{3}=0010111 \\
c_{1}+c_{2}=1110010 & c_{1}+c_{3}=1001011 & c_{2}+c_{3}=0111001 \\
& c_{1}+c_{2}+c_{3}=1100101 &
\end{array}
$$

and it is cyclic because the right shifts have the following impacts

$$
\begin{array}{ccc}
c_{1} \rightarrow c_{2}, & c_{2} \rightarrow c_{3}, & c_{3} \rightarrow c_{1}+c_{3} \\
c_{1}+c_{2} \rightarrow c_{2}+c_{3}, & c_{1}+c_{3} \rightarrow c_{1}+c_{2}+c_{3}, & c_{2}+c_{3} \rightarrow c_{1} \\
& c_{1}+c_{2}+c_{3} \rightarrow c_{1}+c_{2} &
\end{array}
$$

POLYNOMIALS over GF(q)

A codeword of a cyclic code is usually denoted

$$
a_{0} a_{1} \ldots a_{n-1}
$$

and to each such a codeword the polynomial

$$
a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}
$$

is associated.
$F_{q}[x]$ denotes the set of all polynomials over $G F(q)$.
$\operatorname{deg}(f(x))=$ the largest m such that x^{m} has a non-zero coefficient in $f(x)$.
Multiplication of polynomials If $\mathrm{f}(x), \mathrm{g}(x) \in F_{\mathrm{q}}[x]$, then

$$
\operatorname{deg}(f(x) g(x))=\operatorname{deg}(f(x))+\operatorname{deg}(g(x))
$$

Division of polynomials For every pair of polynomials $\mathrm{a}(x), \mathrm{b}(x) \neq 0$ in $F_{\mathrm{q}}[x]$ there exists a unique pair of polynomials $\mathrm{q}(x), \mathrm{r}(x)$ in $F_{\mathrm{q}}[x]$ such that

$$
\mathrm{a}(x)=\mathrm{q}(x) \mathrm{b}(x)+\mathrm{r}(x), \operatorname{deg}(\mathrm{r}(x))<\operatorname{deg}(\mathrm{b}(x)) .
$$

Example Divide $x^{3}+x+1$ by $x^{2}+x+1$ in $F_{2}[x]$.
Definition Let $\mathrm{f}(x)$ be a fixed polynomial in $F_{\mathrm{q}}[x]$. Two polynomials $\mathrm{g}(x), \mathrm{h}(x)$ are said to be congruent modulo $f(x)$, notation

$$
\mathrm{g}(x) \equiv \mathrm{h}(x)(\bmod \mathrm{f}(x))
$$

if $\mathrm{g}(x)-\mathrm{h}(x)$ is divisible by $\mathrm{f}(x)$.

RING of POLYNOMIALS

The set of polynomials in $F_{\mathrm{q}}[x]$ of degree less than $\operatorname{deg}(f(x))$, with addition and multiplication modulo $\mathrm{f}(x)$ forms a ring denoted $\mathrm{F}_{\mathrm{q}}[\mathbf{x}] / \mathrm{f}(\mathbf{x})$.
Example Calculate $(x+1)^{2}$ in $F_{2}[x] /\left(x^{2}+x+1\right)$. It holds

$$
(x+1)^{2}=x^{2}+2 x+1 \equiv x^{2}+1 \equiv x\left(\bmod x^{2}+x+1\right) .
$$

How many elements has $F_{\mathrm{q}}[x] / \mathrm{f}(x)$?
Result $\left|F_{q}[x] / f(x)\right|=q \operatorname{deg}(f(x))$.
Example Addition and multiplication in $F_{2}[x] /\left(x^{2}+x+1\right)$

+	0	1	x	$1+x$
0	0	1	x	$1+x$
1	1	0	$1+x$	x
x	x	$1+x$	0	1
$1+x$	$1+x$	x	1	0

\bullet	0	1	x	$1+\mathrm{x}$
0	0	0	0	0
1	0	1	x	$1+\mathrm{x}$
x	0	x	$1+\mathrm{x}$	1
$1+\mathrm{x}$	0	$1+\mathrm{x}$	1	x

Definition A polynomial $f(x)$ in $F_{q}[x]$ is said to be reducible if $f(x)=a(x) b(x)$, where $\mathrm{a}(x), \mathrm{b}(x) \in F_{\mathrm{q}}[x]$ and

$$
\operatorname{deg}(\mathrm{a}(x))<\operatorname{deg}(\mathrm{f}(x)), \quad \operatorname{deg}(\mathrm{b}(x))<\operatorname{deg}(\mathrm{f}(x))
$$

If $\mathrm{f}(x)$ is not reducible, it is irreducible in $F_{\mathrm{q}}[x]$.
Theorem The ring $F_{\mathrm{q}}[x] / \mathrm{f}(x)$ is a field if $\mathrm{f}(x)$ is irreducible in $F_{\mathrm{q}}[x]$.

FIELD $R_{\mathrm{n}}, R_{\mathrm{n}}=F_{\mathrm{q}}[x] /\left(x^{\mathrm{n}}-1\right)$

Computation modulo $x^{n}-1$

Since $x^{n} \equiv 1\left(\bmod x^{n}-1\right)$ we can compute $\mathrm{f}(x) \bmod x^{n}-1$ as follow:
In $\mathrm{f}(x)$ replace x^{n} by $1, x^{n+1}$ by x, x^{n+2} by x^{2}, x^{n+3} by x^{3}, \ldots

Identification of words with polynomials

$$
a_{0} a_{1} \ldots a_{n-1} \leftrightarrow a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}
$$

Multiplication by x in R_{n} corresponds to a single cyclic shift

$$
x\left(a_{0}+a_{1} x+\ldots a_{n-1} x^{n-1}\right)=a_{n-1}+a_{0} x+a_{1} x^{2}+\ldots+a_{n-2} x^{n-1}
$$

Algebraic characterization of cyclic codes

Theorem A code C is cyclic if C satisfies two conditions
(i) $\mathrm{a}(x), \mathrm{b}(x) \in C \Rightarrow \mathrm{a}(x)+\mathrm{b}(x) \in C$
(ii) $\mathrm{a}(x) \in C, \mathrm{r}(x) \in R_{\mathrm{n}} \Rightarrow \mathrm{r}(x) \mathrm{a}(x) \in C$

Proof

(1) Let C be a cyclic code. C is linear \Rightarrow (i) holds.
(ii) Let $a(x) \in C, r(x)=r_{0}+r_{1} x+\ldots+r_{n-1} x^{n-1}$

$$
r(x) a(x)=r_{0} a(x)+r_{1} x a(x)+\ldots+r_{n-1} x^{n-1} a(x)
$$

is in C by (i) because summands are cyclic shifts of $a(x)$.
(2) Let (i) and (ii) hold

- Taking $r(x)$ to be a scalar the conditions imply linearity of C.
- Taking $r(x)=x$ the conditions imply cyclicity of C.

CONSTRUCTION of CYCLIC CODES

Notation If $\mathrm{f}(x) \in R_{\mathrm{n}}$, then

$$
\langle\mathrm{f}(x)\rangle=\left\{\mathrm{r}(x) \mathrm{f}(x) \mid \mathrm{r}(x) \in R_{\mathrm{n}}\right\}
$$

(multiplication is modulo $x^{n}-1$).
Theorem For any $\mathrm{f}(x) \in R_{\mathrm{n}}$, the set $\langle\mathrm{f}(\mathrm{x})\rangle$ is a cyclic code (generated by f).
Proof We check conditions (i) and (ii) of the previous theorem.
(i) If $\mathrm{a}(x) \mathrm{f}(x) \in\langle\mathrm{f}(x)\rangle$ and $\mathrm{b}(x) \mathrm{f}(x) \in\langle\mathrm{f}(x)\rangle$, then

$$
\mathrm{a}(x) \mathrm{f}(x)+\mathrm{b}(x) \mathrm{f}(x)=(\mathrm{a}(x)+\mathrm{b}(x)) \mathrm{f}(x) \in\langle\mathrm{f}(x)\rangle
$$

(ii) If $\mathrm{a}(x) \mathrm{f}(x) \in\langle\mathrm{f}(x)\rangle, \mathrm{r}(x) \in R_{\mathrm{n}}$, then

$$
\mathrm{r}(x)(\mathrm{a}(x) \mathrm{f}(x))=(\mathrm{r}(x) \mathrm{a}(x)) \mathrm{f}(x) \in\langle\mathrm{f}(x)\rangle .
$$

Example $C=\left\langle 1+x^{2}\right\rangle, n=3, q=2$.
We have to compute $\mathrm{r}(x)\left(1+x^{2}\right)$ for all $\mathrm{r}(x) \in R_{3}$.

$$
R_{3}=\left\{0,1, x, 1+x, x^{2}, 1+x^{2}, x+x^{2}, 1+x+x^{2}\right\} .
$$

Result

$$
\begin{gathered}
C=\left\{0,1+x, 1+x^{2}, x+x^{2}\right\} \\
C=\{000,011,101,110\}
\end{gathered}
$$

Characterization theorem for cyclic codes

We show that all cyclic codes C have the form $C=\langle f(x)\rangle$ for some $f(x) \in R_{\mathrm{n}}$.
Theorem Let C be a non-zero cyclic code in R_{n}. Then

- there exists unique monic polynomial $g(x)$ of the smallest degree such that
- $C=\langle g(x)\rangle$
- $g(x)$ is a factor of $x^{n}-1$.

Proof
(i) Suppose $g(x)$ and $h(x)$ are two monic polynomials in C of the smallest degree.

Then the polynomial $g(x)-h(x) \in C$ and it has a smaller degree and a multiplication by a scalar makes out of it a monic polynomial. If $g(x) \neq h(x)$ we get a contradiction.
(ii) Suppose $a(x) \in C$.

Then

$$
\mathrm{a}(x)=\mathrm{q}(x) \mathrm{g}(x)+\mathrm{r}(x) \quad(\operatorname{deg} \mathrm{r}(x)<\operatorname{deg} \mathrm{g}(x))
$$

and

$$
\mathrm{r}(x)=\mathrm{a}(x)-\mathrm{q}(x) \mathrm{g}(x) \in C
$$

By minimality

$$
r(x)=0
$$

and therefore $\mathrm{a}(x) \in\langle\mathrm{g}(x)\rangle$.

Characterization theorem for cyclic codes

(iii) Clearly,

$$
x^{n}-1=\mathrm{q}(x) \mathrm{g}(x)+\mathrm{r}(x) \text { with } \quad \operatorname{deg} \mathrm{r}(x)<\operatorname{deg} \mathrm{g}(x)
$$

and therefore

$$
\mathrm{r}(x) \equiv-\mathrm{q}(x) \mathrm{g}(x)\left(\bmod x^{n}-1\right) \text { and }
$$

$$
\mathrm{r}(x) \in C \Rightarrow \mathrm{r}(x)=0 \Rightarrow \mathrm{~g}(x) \text { is a factor of } x^{\mathrm{n}}-1
$$

GENERATOR POLYNOMIALS

Definition If for a cyclic code C it holds

$$
C=\langle g(x)\rangle,
$$

then g is called the generator polynomial for the code C.

HOW TO DESIGN CYCLIC CODES?

The last claim of the previous theorem gives a recipe to get all cyclic codes of given length n.
Indeed, all we need to do is to find all factors of

$$
x^{n}-1
$$

Problem: Find all binary cyclic codes of length 3.
Solution: Since

$$
x^{3}-1=\underbrace{\frac{(x+1)\left(x^{2}+x+1\right)}{\text { factors are irreducible in } G F(2)}}_{\text {both }}
$$

we have the following generator polynomials and codes.

Generator polynomials	$\underline{\text { Code in } R_{\underline{3}}}$	Code in V $(3,2)$
1	R_{3}	$V(3,2)$
$x+1$	$\left\{0,1+x, x+x^{2}, 1+x^{2}\right\}$	\{000, 110, 011, 101\}
$x^{2}+x+1$	$\left\{0,1+x+x^{2}\right\}$	\{000, 111\}
$x^{3}-1(=0)$	\{0\}	\{000\}

Design of generator matrices for cyclic codes

Theorem Suppose C is a cyclic code of codewords of length n with the generator polynomial

$$
g(x)=g_{0}+g_{1} x+\ldots+g_{r} x^{r} .
$$

Then $\operatorname{dim}(C)=n-r$ and a generator matrix G_{1} for C is

Proof

$$
G_{1}=\left(\begin{array}{cccccccccc}
g_{0} & g_{1} & g_{2} & \ldots & g_{r} & 0 & 0 & 0 & \ldots & 0 \\
0 & g_{0} & g_{1} & g_{2} & \ldots & g_{r} & 0 & 0 & \ldots & 0 \\
0 & 0 & g_{0} & g_{1} & g_{2} & \ldots & g_{r} & 0 & \ldots & 0 \\
. . & . . & & & & & & & & . . \\
0 & 0 & \ldots & 0 & 0 & \ldots & 0 & g_{0} & \ldots & g_{r}
\end{array}\right)
$$

(i) All rows of G_{1} are linearly independent.
(ii) The $n-r$ rows of G represent codewords

$$
\begin{equation*}
g(x), x g(x), x^{2} g(x), \ldots, x^{n-r-1} g(x) \tag{*}
\end{equation*}
$$

(iii) It remains to show that every codeword in C can be expressed as a linear combination of vectors from (*).
Inded, if $a(x) \in C$, then

$$
a(x)=q(x) g(x)
$$

Since $\operatorname{deg} \mathrm{a}(x)<\mathrm{n}$ we have $\operatorname{deg} \mathrm{q}(x)<\mathrm{n}-\mathrm{r}$.
Hence

$$
\mathrm{q}(x) \mathrm{g}(x)=\left(\mathrm{q}_{0}+\mathrm{q}_{1} x+\ldots+\mathrm{q}_{\mathrm{n-r-1}} x^{n-r-1}\right) \mathrm{g}(x)
$$

$$
=q_{0} g(x)+q_{1} x g(x)+\ldots+q_{n-r-1} x^{n-r-1} g(x) .
$$

EXAMPLE

The task is to determine all ternary codes of length 4 and generators for them.
Factorization of $x^{4}-1$ over $G F(3)$ has the form

$$
x^{4}-1=(x-1)\left(x^{3}+x^{2}+x+1\right)=(x-1)(x+1)\left(x^{2}+1\right)
$$

Therefore there are $2^{3}=8$ divisors of $x^{4}-1$ and each generates a cyclic code.

$$
\begin{gathered}
\text { Generator polynomial } \\
1 \\
x \\
\\
x+1 \\
x^{2}+1 \\
(x-1)(x+1)=x^{2}-1 \\
(x-1)\left(x^{2}+1\right)=x^{3}-x^{2}+x-1 \\
(x+1)\left(x^{2}+1\right) \\
x^{4}-1=0
\end{gathered}
$$

$$
\begin{aligned}
& \text { Generator matrix } \\
& {\left[\begin{array}{cccc}
-1 & I_{4} & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]} \\
& {\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]} \\
& {\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{llll}
-1 & 1 & -1 & 1
\end{array}\right]} \\
& \text { [} \left.1 \begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right] \\
& \text { [} 000001]
\end{aligned}
$$

