Linear Block Codes

The parity bits of linear block codes are linear combination of the message. Therefore, we can represent the encoder by a linear system described by matrices.

Basic Definitions

- Linearity:

$$
\begin{aligned}
& \text { If } \quad \mathbf{m}_{1} \rightarrow \mathbf{c}_{1} \text { and } \mathbf{m}_{2} \rightarrow \mathbf{c}_{2} \\
& \text { then } \mathbf{m}_{1} \oplus \mathbf{m}_{2} \rightarrow \mathbf{c}_{1} \oplus \mathbf{c}_{2}
\end{aligned}
$$

where $\quad \mathbf{m}$ isak-bit information sequence
c is an n-bit codeword.
\oplus is a bit-by-bit mod-2 addition without carry

- Linear code: The sum of any two codewords is a codeword.
- Observation: The all-zero sequence is a codeword in every

linear block code.

Basic Definitions (cont'd)

- Def: The weight of a codeword \mathbf{c}_{i}, denoted by w $\left(\mathbf{c}_{i}\right)$, is the number of of nonzero elements in the codeword.
- Def: The minimum weight of a code, $\mathrm{w}_{\text {min }}$, is the smallest weight of the nonzero codewords in the code.
- Theorem: In any linear code, $\mathrm{d}_{\text {min }}=\mathrm{w}_{\text {min }}$
- Systematic codes

Any linear block code can be put in systematic form

linear Encoder.

By linear transformation
$\mathbf{c}=\mathbf{m} \cdot \mathbf{G}=\mathbf{m}_{0} \mathbf{g}_{0}+\mathrm{m}_{1} \mathrm{~g}_{0}+\ldots . \ldots \mathrm{m}_{\mathrm{k} \cdot} \mathrm{g}_{\mathrm{k}-1}$
The code C is called a k-dimensional subspace.
G is called a generator matrix of the code.
Here G is a $k \times n$ matrix of rank k of elements from GF(2), g, is the i-th row vector of G.
The rows of G are linearly independent since G is assumed to have rank k.

Example:

(7, 4) Hamming code over GF(2)
The encoding equation for this code is given by

$$
\begin{aligned}
& \mathbf{c}_{\mathbf{0}}=\mathbf{m}_{0} \\
& \mathbf{c}_{\mathbf{1}}=\mathbf{m}_{1} \\
& \mathbf{c}_{\mathbf{2}}=\mathbf{m}_{2} \\
& \mathbf{c}_{\mathbf{3}}=\mathbf{m}_{3} \\
& \mathbf{c}_{\mathbf{4}}=\mathbf{m}_{\mathbf{0}}+\mathbf{m}_{\mathbf{1}}+\mathbf{m}_{2} \\
& \mathbf{c}_{\mathbf{5}}=\mathbf{m}_{\mathbf{1}}+\mathbf{m}_{\mathbf{2}}+\mathbf{m}_{3} \\
& \mathbf{c}_{\mathbf{6}}=\mathbf{m}_{\mathbf{0}}+\mathbf{m}_{\mathbf{1}}+\mathbf{m}_{3}
\end{aligned}
$$

$$
G=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

Linear Systematic Block Code:

An (n, k) linear systematic code is completely specified by a $k \times n$ generator matrix of the following form.

$$
\boldsymbol{G}=\left[\begin{array}{c}
\overline{\boldsymbol{g}}_{0} \\
\overline{\boldsymbol{g}}_{1} \\
\vdots \\
\overline{\boldsymbol{g}}_{k-1}
\end{array}\right]=\left[\boldsymbol{I}_{k} \boldsymbol{P}\right]
$$

where I_{k} is the $k \times k$ identity matrix.

Linear Block Codes

- the number of codeworde is 2^{k} since there are 2^{k} distinct messages.
- The set of vectors $\left\{g_{i}\right\}$ are linearly independent since we must have a set of unique codewords.
- linearly independent vectors mean that no vector g_{i} can be expressed as a linear combination of the other vectors.
- These vectors are called baises vectors of the vector space C.
- The dimension of this vector space is the number of the basis vector which arek.
- $\mathrm{G}_{\mathrm{i}} \in \mathrm{C} \rightarrow$ the rows of G are all legal codewords.

Hamming Weight

the minimum hamming distance of a linear block code is equal to the minimum hamming weight of the nonzero code vectors.

Since each $g_{i} \in C$, we must have $W_{h}\left(g_{i}\right) \geq d_{\text {min }}$ this a necessary condition but not sufficient.

Therefore, if the hamming weight of one of the rows of G is less than $\mathrm{d}_{\text {min }}, \rightarrow \mathrm{d}_{\text {min }}$ is not correct or G not correct.

Generator M atrix

- All 2^{k} codewords can be generated from a set of k linearly independent codewords.
- The simplest choice of this set is the k codewords corresponding to the information sequences that have a single nonzero element.
- Illustration: The generating set for the $(7,4)$ code: $1000 \Longrightarrow 1101000$
$0100 \Longrightarrow 0110100$
$0010 \Longrightarrow 110010$
$0001 \Longrightarrow 1010001$

Generator M atrix (cont'd)

- Every codeword is a linear combination of these 4 codewords. That is: $\mathbf{c}=\mathbf{m} \mathbf{G}$, where

$$
\mathbf{G}=\left[\begin{array}{ccccccc}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & \underbrace{0}_{k \times(n-k)} & 0 & 0 & 1
\end{array}\right]=\left[\mathbf{P} \mid \mathbf{I}_{\mathbf{k}}\right]
$$

- Storage requirement reduced from $2^{k}(n+k)$ to $k(n-k)$.

Parity-Check M atrix

For $\mathbf{G}=\left[\mathbf{P} \mid \mathbf{I}_{\mathrm{k}}\right]$, define the matrix $\mathbf{H}=\left[\mathbf{I}_{\mathrm{n}-\mathrm{k}} \mid \mathbf{P}^{\mathrm{T}}\right]$
(The size of \mathbf{H} is $(\mathrm{n}-\mathrm{k}) \mathrm{xn}$).
It follows that $\mathbf{G H}{ }^{\mathrm{T}}=\mathbf{0}$.
Since $\mathbf{c}=\mathbf{m G}$, then $\mathbf{c H}^{\mathrm{T}}=\mathbf{m G H}{ }^{\mathrm{T}}=\mathbf{0}$.

$$
\mathbf{H}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Encoding Using H M atrix

$$
\left.\begin{array}{l}
{\left[\begin{array}{lllllll}
c_{1} & c_{2} & c_{3} & c_{4} & c_{5} & c_{6} & c_{7}
\end{array}\right]} \\
\underbrace{\left[\begin{array}{llll}
1
\end{array}\right.}_{\text {information }}\left[\begin{array}{llll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]=\mathbf{0}
\end{array}\right] \begin{aligned}
& c_{1}+c_{4}+c_{6}+c_{7}=0 \\
& c_{2}+c_{4}+c_{5}+c_{6}=0 \\
& c_{3}+c_{5}+c_{6}+c_{7}=0
\end{aligned} \Rightarrow \begin{aligned}
& c_{1}=c_{4}+c_{6}+c_{7} \\
& c_{2}=c_{4}+c_{5}+c_{6} \\
& c_{3}=c_{5}+c_{6}+c_{7}
\end{aligned}
$$

Encoding Circuit

Input u

The Encoding Problem (Revisited)

- Linearity makes the encoding problem a lot easier, yet: How to construct the G (or H) matrix of a code of minimum distance $\mathrm{d}_{\text {min }}$?
- The general answer to this question will be attempted later. For the time being we will state the answer to a class of codes: the Hamming codes.

Hamming Codes

- Hamming codes constitute a class of single-error correcting codes defined as:

$$
n=2 r-1, k=n-r, r>2
$$

- The minimum distance of the code $\mathrm{d}_{\text {min }}=3$
- Hamming codes are perfect codes.
- Construction rule:

The H matrix of a Hamming code of order r has as its columns all non-zero r-bit patterns.
Size of H: rx $\left(2^{r-1}\right)=(n-k) x n$

