Encoding Circuit

Input u

The Encoding Problem (Revisited)

- Linearity makes the encoding problem a lot easier, yet: How to construct the G (or H) matrix of a code of minimum distance $\mathrm{d}_{\text {min }}$?
- The general answer to this question will be attempted later. For the time being we will state the answer to a class of codes: the Hamming codes.

Hamming Codes

- Hamming codes constitute a class of single-error correcting codes defined as:

$$
n=2 r-1, k=n-r, r>2
$$

- The minimum distance of the code $\mathrm{d}_{\text {min }}=3$
- Hamming codes are perfect codes.
- Construction rule:

The H matrix of a Hamming code of order r has as its columns all non-zero r-bit patterns.
Size of H: rx $\left(2^{r-1}\right)=(n-k) x n$

Decoding

- Let \mathbf{c} be transmitted and \mathbf{r} be received, where

$$
\begin{aligned}
& \mathbf{r}=\mathbf{c}+\mathbf{e} \\
& \mathbf{e}=\text { error pattern }=\mathrm{e}_{\mathrm{e}}^{2} 2 \mathrm{e}_{\mathrm{n}}, \text { where }
\end{aligned}
$$

The weight of \mathbf{e} determines the number of errors. If the error pattern can be determined, decoding can be achieved by:

$$
\mathbf{c}=\mathbf{r}+\mathbf{e}
$$

Decoding (cont'd)

Consider the (7,4) code.
(1) Let 1101000 be transmitted and 1100000 be received.

Then: $\mathbf{e}=0001000$ (an error in the fourth location)
(2) Let $\mathbf{r}=1110100$. What was transmitted?

	\mathbf{c}	\mathbf{e}
\#2	0110100	1000000
\#1	1101000	001100
\#3	1011100	0101000

The first scenario is the most probable.

Standard Array

Standard Array (cont'd)

1 List the 2^{k} codewords in a row, starting with the all-zero codeword C_{0}.
2. Select an error pattern \mathbf{e}_{1} and place it below c_{0}. This error pattern will be a correctable error pattern, therefore it should be selected such that:
(i) it has the smallest weight possible (most probable error)
(ii) it has not appeared before in the array.
3. Repeat step 2 until all the possible error patterns have been accounted for. There will always be $2^{\mathrm{n}} / 2^{\mathrm{k}}=2^{\mathrm{n}-\mathrm{k}}$ rows in the array. Each row is called a coset. The leading error pattern is the coset leader.

Standard Array Decoding

- For an (n,k) linear code, standard array decoding is able to correct exactly 2^{n-k} error patterns, including the all-zero error pattern.
- Illustration 1: The $(7,4)$ Hamming code \#of correctable error patterns $=2^{3}=8$ \#of single-error patterns = 7
Therefore, all single-error patterns, and only singleerror patterns can be corrected. (Recall the Hamming Bound, and the fact that Hamming codes are perfect.

Standard Array Decoding (cont'd)

 Illustration 2: The $(6,3)$ code defined by the H matrix:$$
\mathbf{H}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right]
$$

Codewords
000000
110001
101010
011011
011100
101101
110110
000111
$d_{\text {min }}=3$

Standard Array Decoding (cont'd)

- Can correct all single errors and one double error pattern
000000110001101010011011011100101101110110000111
000001110000101011011010011101101100110111000110
000010110011101000011001011110101111110100000101
000100110101101110011111011000101001110010000011
001000111001100010010011010100100101111110001111
010000100001111010001011001100111101100110010111
100000010001001010111011111100001101010110100111
100100010101001110111111111000001001010010100011

The Syndrome

- Huge storage memory (and searching time) is required by standard array decoding.
- Define the syndrome

$$
\mathbf{s}=\mathbf{v} \mathbf{H}^{\mathrm{T}}=(\mathbf{c}+\mathbf{e}) \mathbf{H}^{\mathrm{T}}=\mathbf{e} \mathbf{H}^{\mathrm{T}}
$$

- The syndrome depends only on the error pattern and not on the transmitted codeword.
- Therefore, each coset in the array is associated with a unique syndrome.

The Syndrom (cont'd)

Error Pattern Syndrome

0000000	000
1000000	100
0100000	010
0010000	001
0001000	110
0000100	011
0000010	111
0000001	101

Syndrome Decoding

Decoding Procedure:
1 For the received vector \mathbf{v}, compute the syndrome $\mathbf{s}=\mathbf{v H}$.
2. Using the table, identify the error pattern \mathbf{e}.
3. Add \mathbf{e} to \mathbf{v} to recover the transmitted codeword \mathbf{c}.

Example:

$\mathbf{v}=1110101 \Longrightarrow \mathbf{s}=001 \Longrightarrow \mathbf{e}=0010000$
Then, $\mathbf{c}=1100101$

- Syndrome decoding reduces storage memory from nx2n to $2^{n-k}(2 n-k)$. Also, It reduces the searching time considerably.

Decoding of Hamming Codes

- Consider a single-error pattern $\mathbf{e}^{(\mathrm{i})}$, where i is a number determining the position of the error.
- $\mathbf{s}=\mathbf{e}^{(\mathrm{i})} \mathbf{H}^{\mathrm{T}}=\mathbf{H}_{\mathrm{i}}^{\mathrm{T}}=$ the transpose of the $\mathrm{i}^{\text {th }}$ column of \mathbf{H}.
- Example:

$$
\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]
$$

Decoding of Hamming Codes

 (cont'd)- That is, the (transpose of the) $\mathrm{i}^{\text {th }}$ column of H is the syndrome corresponding to a single error in the $i^{\text {th }}$ position.
- Decoding rule:

1 Compute the syndrome $\mathbf{s}=\mathbf{v H}^{\mathrm{T}}$
2. Locate the error (i.e. find i for which $\mathbf{s}^{\mathrm{T}}=\mathbf{H}_{\mathrm{i}}$)
3. Invert the ${ }^{\text {th }}$ bit of \mathbf{v}.

Hardware Implementation

- Let $\mathbf{v}=\mathrm{v}_{0} \mathrm{v}_{1} \mathrm{~V}_{2} \mathrm{v}_{3} \mathrm{~V}_{4} \mathrm{~V}_{5} \mathrm{v}_{6}$ and $\mathbf{s}=\mathrm{s}_{0} \mathrm{~S}_{1} \mathrm{~s}_{2}$
- From the \mathbf{H} matrix:

$$
\begin{aligned}
& s_{0}=v_{0}+v_{3}+v_{5}+v_{6} \\
& s_{1}=v_{1}+v_{3}+v_{4}+v_{5} \\
& s_{2}=v_{2}+v_{4}+v_{5}+v_{6}
\end{aligned}
$$

- From the table of syndromes and their corresponding correctable error patterns, a truth table can be construsted. A combinational logic circuit with $\mathrm{s}_{0}, \mathrm{~s}_{1}$, s_{2} as input and $\mathrm{e}_{0}, \mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}, \mathrm{e}_{5}, \mathrm{e}_{6}$ as outputs can be designed.

Decoding Circuit for the $(7,4) \mathrm{HC}$

