Lecture-2

Common Emitter, RC Coupled and Common Source Amplifier

Short-circuit time-constant method (SCTC)

- To determine the lower-cutoff frequency having n coupling and bypass capacitors:

$$
\omega_{L} \cong \sum_{i=1}^{n} \frac{1}{R_{i S} C_{i}}
$$

$R_{i S}=$ resistance at the terminals of the i th capacitor C_{i} with all the other capacitors replaced by short circuits.

Common-emitter Amplifier

Given :
Q-point values: 1.73 $\mathrm{mA}, 2.32 \mathrm{~V}$
$\beta=100, \mathrm{~V}_{\mathrm{A}}=75 \mathrm{~V}$

Therefore,
$r_{\pi}=1.45 \mathrm{k} \Omega$,
$r_{0}=44.7 \mathrm{k} \Omega$

Common-emitter Amplifier
 - Low-frequency ac equivalent circuit

In the above circuit, there are 3 capacitors (coupling plus bypass capacitors). Hence we need to find 3 resistances at the terminals of the 3 capacitors in order to find the lower cut-off frequency of the amplifier circuit.

Circuit for finding $\mathrm{R}_{1 \mathrm{~s}}$

$$
\frac{1}{R_{1 S} C_{1}}=\frac{1}{(2.22 k \Omega)(2.00 \mu F)}=225 \mathrm{rad} / \mathrm{s}
$$

Circuit for finding $\mathrm{R}_{2 \mathrm{~s}}$

Circuit for finding R_{35}

Estimation of ω_{L}

$$
\begin{gathered}
\omega_{L} \cong \sum_{i=1}^{3} \frac{1}{R_{i S} C_{i}}=225+96.1+4410=4730 \mathrm{rad} / \mathrm{s} \\
f_{L}=\frac{\omega_{L}}{2 \pi}=753 \mathrm{~Hz}
\end{gathered}
$$

Common-base Amplifier

Given :
Q-point values : 0.1 mA, 5 V
$\beta=100, \mathrm{~V}_{\mathrm{A}}=70 \mathrm{~V}$
Therefore,

$$
\begin{aligned}
& g_{m}=3.85 \mathrm{mS}, \mathrm{r}_{\mathrm{o}}=700 \mathrm{k} \Omega \\
& \mathrm{r}_{\pi}=26 \Omega
\end{aligned}
$$

Common-base Amplifier

- Low-frequency ac equivalent circuit

Circuit for finding R_{15}

$$
\begin{aligned}
& R_{1 S}=R_{S}+\left(R_{E} \| R_{\text {inCB }}\right) \cong R_{S}+\left(R_{E} \| \frac{r_{\pi}}{1+\beta}\right)=100+(4300 \| 0.26) \cong 100 \Omega \\
& \frac{1}{R_{1 S} C_{1}}=\frac{1}{(100 \Omega)(4.7 \mu F)}=2.13 \times 10^{-3} \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Circuit for finding R_{25}

$$
\frac{1}{R_{2 S} C_{2}}=\frac{1}{(97 \mathrm{k} \Omega)(1 \mu F)}=10.309 \mathrm{rad} / \mathrm{s}
$$

Estimation of ω_{L}

$$
\omega_{L} \cong \sum_{i=1}^{2} \frac{1}{R_{i S} C_{i}}=2.13 \times 10^{-3}+10.309 \cong 10.309 \mathrm{rad} / \mathrm{s}
$$

$$
f_{L}=\frac{\omega_{L}}{2 \pi}=1.64 \mathrm{~Hz}
$$

Common-collector Amplifier

Given :

Q-point values: $1 \mathrm{~mA}, 5 \mathrm{~V}$
$\beta=100, V_{A}=70 \mathrm{~V}$

Therefore,
$r_{\pi}=2.6 \mathrm{k} \Omega, \mathrm{r}_{\mathrm{o}}=70 \mathrm{k} \Omega$

Common-collector Amplifier
 - Low-frequency ac equivalent circuit

Circuit for finding R_{15}

$$
\begin{aligned}
R_{1 S} & =R_{S}+\left(R_{B} \| R_{i n C C}\right)=R_{S}+\left(R_{B} \|\left[r_{\pi}+(\beta+1)\left(r_{o}\left\|R_{E}\right\| R_{L}\right)\right]\right) \\
& =74.43 \mathrm{k} \Omega
\end{aligned}
$$

$$
\frac{1}{R_{1 S} C_{1}}=\frac{1}{(74.43 \mathrm{k} \Omega)(0.1 \mu F)}=136.18 \mathrm{rad} / \mathrm{s}
$$

Circuit for finding R_{25}

$$
R_{2 S}=R_{L}+\left(R_{E} \| R_{o u t C C}\right)=R_{L}+\left(R_{E}\left\|\frac{R_{T H}+r_{\pi}}{\beta+1}\right\| r_{o}\right)
$$

$$
\frac{1}{R_{2 S} C_{2}}=\frac{1}{(47.038 \mathrm{k} \Omega)(100 \mu F)}=0.213 \mathrm{rad} / \mathrm{s}
$$

Estimation of ω_{L}

$$
\omega_{L} \cong \sum_{i=1}^{2} \frac{1}{R_{i S} C_{i}}=136.18+0.213=136.393 \mathrm{rad} / \mathrm{s}
$$

$$
f_{L}=\frac{\omega_{L}}{2 \pi}=21.7 \mathrm{~Hz}
$$

Example

Given :

Q-point values : 1.6 mA, 4.86 V
$\beta=100, V_{\mathrm{A}}=70 \mathrm{~V}$
Therefore,
$r_{\pi}=1.62 \mathrm{k} \Omega, \mathrm{r}_{\mathrm{o}}=43.75 \mathrm{k} \Omega, \mathrm{g}_{\mathrm{m}}=$ 61.54 mS

Determine the total low-frequency response of the amplifier.

Low frequency due to C_{1} and $\mathrm{C}_{2} \mathrm{C}_{3}$

$$
\begin{gathered}
R_{1 S}=R_{S}+\left(R_{B} \| r_{\pi}\right)=600+(16.24 k \| 1.62 \mathrm{k})=2.07 \mathrm{k} \Omega \\
R_{B}=R_{1} \| R_{2}=16.24 \mathrm{k} \Omega \\
f_{C_{1}}=\frac{1}{2 \pi R_{1 S} C_{1}}=\frac{1}{2 \pi(2.07 \mathrm{k} \Omega)(0.1 \mu F)}=768.86 \mathrm{~Hz} \cong 769 \mathrm{~Hz} \\
\text { Low frequency due to } \mathrm{C}_{2}
\end{gathered} R_{2 S}=R_{L}+\left(R_{C} \| r_{o}\right)=10 \mathrm{k}+(2.2 \mathrm{k} \| 43.75 \mathrm{k})=12.09 \mathrm{k} \Omega \mathrm{l}=131.64 \mathrm{~Hz} \cong 132 \mathrm{~Hz} .
$$

Low frequency due to C_{3}

$$
\begin{aligned}
& R_{3 S}=R_{E}\left\|\frac{r_{\pi}+R_{T H}}{\beta+1}=1 k\right\| \frac{1.62 k+0.58 k}{101}=21.32 \Omega \\
& R_{T H}=R_{S} \| R_{B}=0.58 \mathrm{k} \Omega \\
& f_{C_{3}}=\frac{1}{2 \pi R_{3 S} C_{3}}=\frac{1}{2 \pi(21.32 \Omega)(10 \mu \mathrm{~F})}=746.5 \mathrm{~Hz} \cong 747 \mathrm{~Hz}
\end{aligned}
$$

