Lecture-1

Oscillator Principal, Wein Bridge Oscillator

Introduction

- Oscillator is an electronic circuit that generates a periodic waveform on its output without an external signal source. It is used to convert dc to ac.
- Oscillators are circuits that produce a continuous signal of some type without the need of an input.
- These signals serve a variety of purposes.
- Communications systems, digital systems (including computers), and test equipment make use of oscillators

Introduction

- An oscillator is a circuit that produces a repetitive signal from a dc voltage.
- The feedback oscillator relies on a positive feedback of the output to maintain the oscillations.
- The relaxation oscillator makes use of an RC timing circuit to
 Sine wave
 or Square wave
 Oscillator
 Oscillator
 Oscillator
 Oscillator

Types of oscillators

- 1. RC oscillators
 - Wien Bridge
 - Phase-Shift
- 2. LC oscillators
 - Hartley
 - Colpitts
 - Crystal

3. Unijunction / relaxation oscillators

• An oscillator is an amplifier with positive feedback.

Basic principles for oscillation

$$V_o = AV_e$$

 $= A(V_s + V_f) = A(V_s + \beta V_o)$
 $V_o = AV_s + A\beta V_o$
 $(1 - A\beta)V_o = AV_s$

• The closed loop gain is:

$$A_f \equiv \frac{V_o}{V_s} = \frac{A}{(1 - A\beta)}$$

 In general A and β are functions of frequency and thus may be written as;

$$A_f(s) = \frac{V_o}{V_s}(s) = \frac{A(s)}{1 - A(s)\beta(s)}$$

 $A(s)\beta(s)$ is known as loop gain

Basic principles for oscillation T(s) = A(s)B(s)

• Writing becomes A(s)I - T(s)

the loop gain

• Replacing *s* with $(g\omega)$ $A_f(j\omega) = \frac{1 - T(j\omega)}{1 - T(j\omega)}$ $T(j\omega) = A(j\omega)\beta(j\omega)$

and

• At a specific frequency f_0

$$T(j\omega_0) = A(j\omega_0)\beta(j\omega_0) = 1$$

• At this frequency, the closed loop gain;

$$A_f(j\omega_0) = \frac{A(j\omega_0)}{1 - A(j\omega_0)\beta(j\omega_0)}$$

will be infinite, i.e. the circuit will have finite output for zero input signal - oscillation

• Thus, the condition for sinusoidal oscillation of frequency f_0 is;

$A(j\omega_0)\beta(j\omega_0)=1$

- This is known as **Barkhausen criterion**.
- The frequency of oscillation is solely determined by the phase characteristic of the feedback loop – the loop oscillates at the frequency for which the phase is zero.

- The feedback oscillator is widely used for generation of sine wave signals.
- The positive (in phase) feedback arrangement maintains the oscillations.
- The feedback gain must be kept to unity to keep the output from distorting.

Design Criteria for Oscillators

1. The magnitude of the loop gain must be unity or slightly larger

 $|A\beta| = 1$ – Barkhaussen criterion

2. Total phase shift, ϕ of the loop gain must be Nx360° where N=0, 1, 2, ...

RC Oscillators

- RC feedback oscillators are generally limited to frequencies of 1 MHz or less.
- The types of RC oscillators that we will discuss are the Wien-bridge and the phase-shift

• It is a low frequency oscillator which ranges from a 1 R_R

• The loop gain for the oscillator is; $T(s) = A(s)\beta(s) = \begin{pmatrix} 1 + \frac{R_2}{R_1} \\ 1 - \frac{R_2}{R_1} \end{pmatrix} \begin{pmatrix} Z_p \\ Z_p + Z_s \end{pmatrix}$

• where;
$$Z_p = \frac{R}{1 + sRC}$$

• and;
$$Z_s = \frac{1 + sRC}{sC}$$

• Hence;
$$T(s) = \left(1 + \frac{R_2}{R_1}\right) \left[\frac{1}{3 + sRC + (1/sRC)}\right]$$

• Substituting for
$$R_{2}$$
;
 $T(j\omega) = \begin{pmatrix} 1 \\ 1 + \frac{R_{2}}{R_{1}} \end{pmatrix} \begin{bmatrix} 1 \\ 3 + j\omega RC + (1/j\omega RC) \end{bmatrix}$

• For
$$(\mathfrak{gsci}) = (qn_{+}freq) = (qn_{+}freq) = (1 + j\omega_{0}RC + (1/j\omega_{0}RC))$$

• Since at the frequency of oscillation, $T(j\omega)$ must be real (for zero phase condition), the imaginary comparent must be zero; $j\omega_0 RC + j\omega_0 RC$

• Which gives $u \omega_0 = \frac{1}{RC}$

• From the previous $T(j\omega_0) = \begin{pmatrix} 1 + \frac{R_2}{R_1} \end{pmatrix} \begin{bmatrix} \text{Equation;} & 1 \\ \frac{1}{3 + j\omega_0 RC} + (1/j\omega_0 RC) \end{bmatrix}$

• the magnitude condition $\frac{R_2}{R_1} = 2$

To ensure oscillation, the ratio R_2/R_1 must be slightly greater than 2.

• With the ratio; $\frac{R_2}{R_1} = 2$

• then;
$$K \equiv 1 + \frac{R_2}{R_1} = 3$$

- K = 3 ensures the loop gain of unity oscillation
 - -K > 3: growing oscillations
 - -K < 3: decreasing oscillations