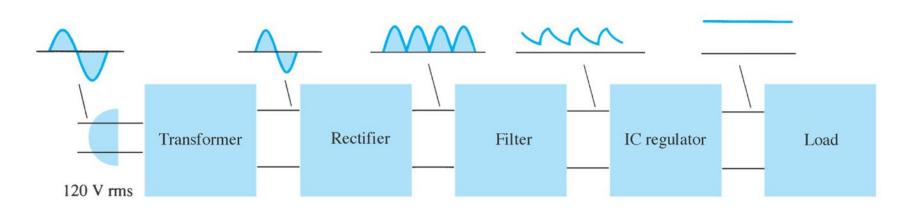
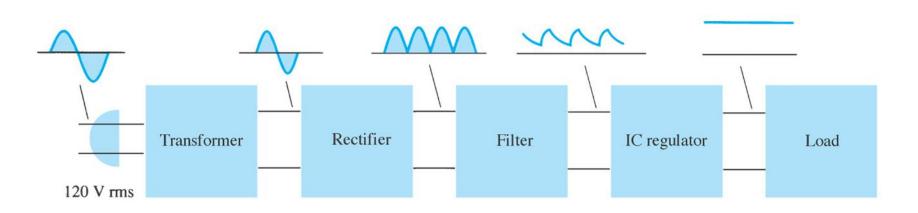
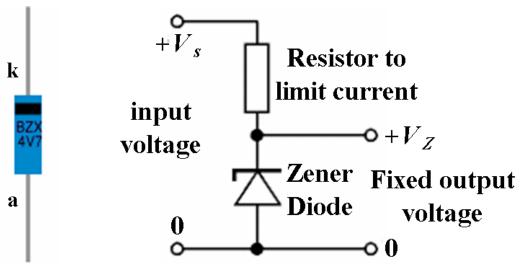

Lecture-4

Voltage Regulators


- Batteries are often shown on a schematic diagram as the source of DC voltage but usually the actual DC voltage source is a power supply.
- There are many types of power supply. Most are designed to convert high voltage AC mains electricity to a suitable low voltage supply for electronics circuits and other devices.
- A more reliable method of obtaining DC power is to transform, rectify, filter and regulate an AC line voltage.
- A power supply can by broken down into a series of blocks, each of which performs a particular function.

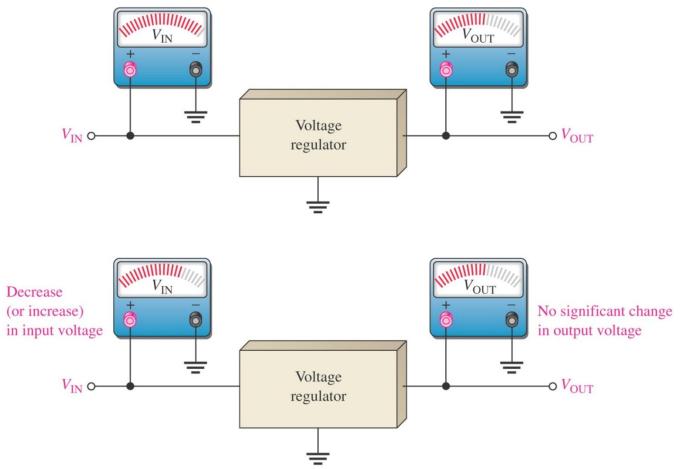

- Power supply: a group of circuits that convert the standard ac voltage (120 V, 60 Hz) provided by the wall outlet to constant dc voltage
- Transformer : a device that step up or step down the ac voltage provided by the wall outlet to a desired amplitude through the action of a magnetic field

- Rectifier: a diode circuits that converts the ac input voltage to a pulsating dc voltage
- The pulsating dc voltage is **only suitable** to be used as a battery charger, but **not good enough** to be used as a dc power supply in a radio, stereo system, computer and so on.


- There are two basic types of rectifier circuits:
 - Half-wave rectifier
 - Full-wave rectifier Center-tapped & Bridge full-wave rectifier
- In summary, a full-wave rectified signal has **less ripple** than a half-wave rectified signal and is thus better to apply to a filter.

- *Filter*: a circuit used to reduce the fluctuation in the rectified output voltage or ripple. This provides a *steadier* dc voltage.
- Regulator: a circuit used to produces a constant dc output voltage by reducing the ripple to negligible amount. One part of power supply.

Regulator - Zener diode regulator


- For low current power supplies a simple voltage regulator can be made with a resistor and a zener diode connected in reverse.
- Zener diodes are rated by their breakdown voltage V_z and maximum power P_z (typically 400mW or 1.3W)

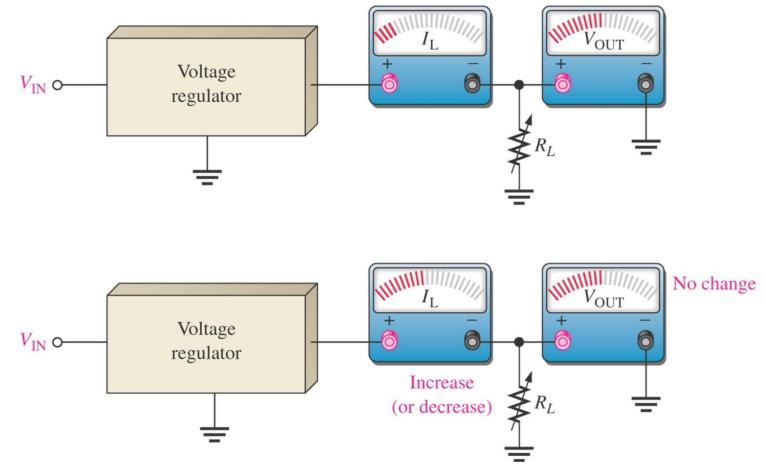
Voltage Regulation

- Two basic categories of voltage regulation are:
 - line regulation
 - Ioad regulation
- The purpose of line regulation is to maintain a nearly constant output voltage when the input voltage varies.
- The purpose of load regulation is to maintain a nearly constant output voltage when the load varies

Line Regulation

Line regulation: A change in input (line) voltage does not significantly affect the output voltage of a regulator (within certain limits)

Line Regulation


• Line regulation can be defined as the percentage change in the output voltage for a given change in the input voltage.

Line regulation =
$$\left(\frac{\Delta V_{OUT}}{\Delta V_{IN}}\right) \times 100\%$$

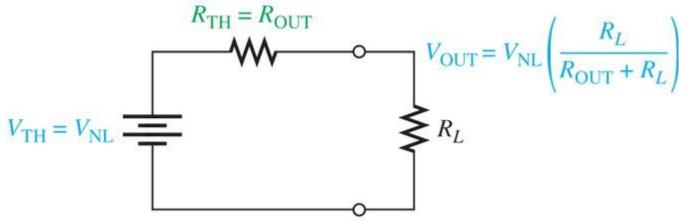
 Δ means "a change in"

• Line regulation can be calculated using the following formula:

$$Line \ regulation = \frac{\left(\Delta V_{OUT} \ / \ V_{OUT}\right) \times 100\%}{\Delta V_{IN}}$$

Load regulation: A change in load current (due to a varying R_L) has practically no effect on the output voltage of a regulator (within certain limits)

• Load regulation can be defined as the percentage change in the output voltage from no-load (NL) to full-load (FL).


Load regulation =
$$\begin{pmatrix} V_{NL} - V_{FL} \\ V_{FL} \end{pmatrix} \times 100\%$$

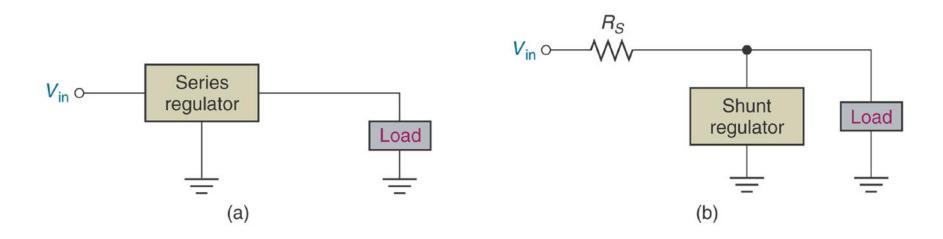
• Where:

 V_{NL} = the no-load output voltage

 V_{FL} = the full-load output voltage

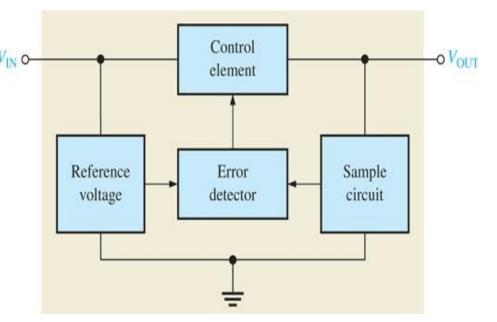
 Sometimes power supply manufacturers specify the equivalent output resistance (R_{out}) instead of its load regulation.

R_{FL} equal the smallest-rated load resistance, then V_{FL}:


$$V_{FL} = V_{NL} \left(\frac{R_{FL}}{R_{OUT} - R_{FL}} \right)$$

• Rearrange the equation:

$$\begin{split} V_{NL} &= V_{FL} \left(\frac{R_{OUT} - R_{FL}}{R_{FL}} \right) \\ Load regulation &= \frac{V_{FL} \left(\frac{R_{OUT} - R_{FL}}{R_{FL}} \right) - V_{FL}}{V_{FL}} \times 100\% \\ Load regulation &= \left(\frac{R_{OUT} - R_{FL}}{R_{FL}} - 1 \right) \times 100\% \\ Load regulation &= \left(\frac{R_{OUT}}{R_{FL}} \right) \times 100\% \end{split}$$


Types of Regulator

- Fundamental classes of voltage regulators are linear regulators and switching regulators.
- Two basic types of linear regulator are the series regulator and the shunt regulator .
- The series regulator is connected in series with the load and the shunt regulator is connected in parallel with the load.

Series Regulator Circuit

- Control element in series with load between input and output.
- Output sample circuit senses a change in output voltage.
- Error detector compares sample voltage with reference voltage → causes control element to compensate in order to maintain a constant output voltage.

Op-Amp Series Regulator Control Element Q_1 V_i V_o (unregulated (regulated voltage) voltage) R_3 V R_1 RE Sample Circuit **Error Detector**

 R_2

 V_Z'

Op-Amp Series Regulator

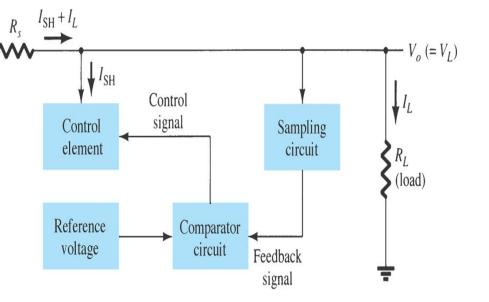
- The resistor R₁ and R₂ sense a change in the output voltage and provide a feedback voltage.
- The error detector compares the feedback voltage with a Zener diode reference voltage.
- The resulting difference voltage causes the transistor Q₁ controls the conduction to compensate the variation of the output voltage.
- The output voltage will be maintained at a constant value of:

$$V_o = \left(1 + \frac{R_1}{R_2}\right) V_Z$$

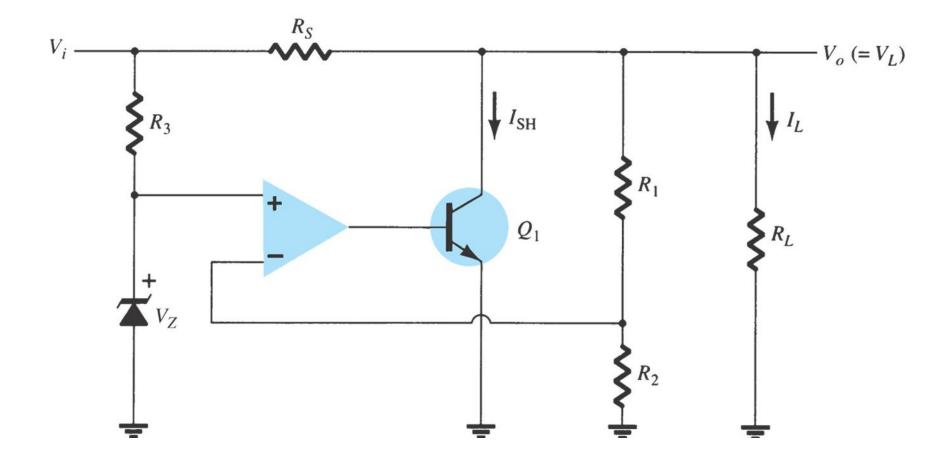
Transistor Series Regulator Q_1 V_i V_o (unregulated (regulated voltage) R voltage) R_L

- The transistor Q₁ is the series control element.
- Zener diode provides the reference voltage.

Transistor Series Regulator

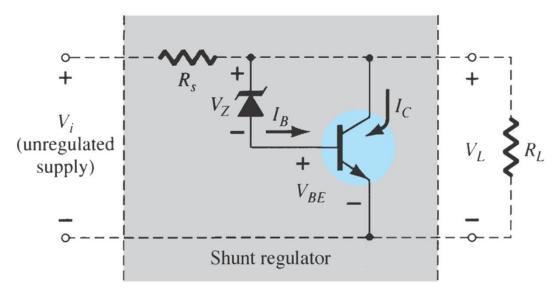

• Since Q_1 is an npn transistor, V_0 is found as:

$$V_{BE} = V_Z - V_o$$


- the response of the pass-transistor to a change in load resistance as follows:
 - If load resistance increases, load voltage also increases.
 - Since the Zener voltage is constant, the increase in V_o causes V_{BE} to decrease.
 - The decrease in V_{BE} reduces conduction through the pass- transistor, so load current decreases.
 - This offsets the increase in load resistance, and a relatively constant load voltage is maintained

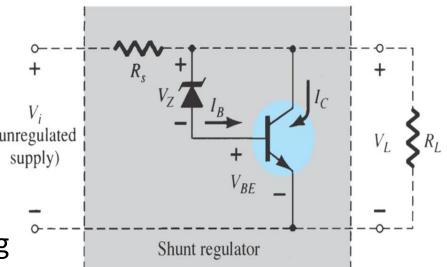
Shunt Regulator Circuit

- The unregulated input voltage provides current to the load.
- Some of the current is pulled away by the control element.
- If the load voltage tries to change due to a change in the load resistance, the sampling circuit provides a feedback signal to a comparator.
- The resulting difference voltage then provides a control signal to vary the amount of the current shunted away from the load to maintain the regulated output voltage across the load.


Op-Amp Shunt Regulator

Op-Amp Shunt Regulator

- When the output voltage tries to decrease due to a change in input voltage or load current caused by a change in load resistance, the decrease is sensed by R₁ and R₂.
- A feedback voltage obtained from voltage divider R₁ and R₂ is applied to the op-amp's non-inverting input and compared to the Zener voltage to control the drive current to the transistor.
- The current through resistor R_s is thus controlled to drop a voltage across R_s so that the output voltage is maintained.


Transistor Shunt Regulator

- The control element is a transistor, in parallel with the load. While, the resistor, R_s , is in series with the load.
- The operation of the transistor shunt regulator is similar to that of the transistor series regulator, except that regulation is achieved by controlling the current through the parallel transistor

Transistor Shunt Regulator

- Resistor R_s drops the unregulated voltage depends on current supplied to load R_L.
- Voltage across the load is set by zener diode and transistor baseemitter voltage.
- If R_L decrease, a reduced drive current to base of Q1 → shunting less collector current.
- Load current, I_L is larger, maintaining the regulated voltage across load.

Transistor Shunt Regulator

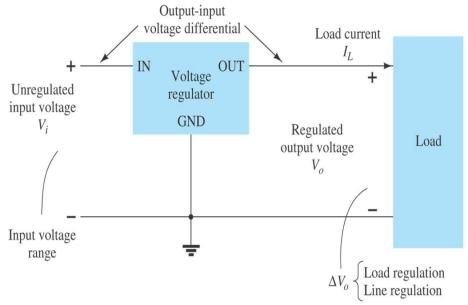
• The output voltage to the load is:

$$V_o = V_L = V_Z + V_{BE}$$

- voltage across the load is set by the Zener diode voltage and the transistor base-emitter voltage.
- If the load resistance decreases, the load current will be larger at a value of:

$$I_{L} = \frac{V_{L}}{R_{L}}$$
 auses the collector current

 The increase in load <u>*RL*</u> auses the collector curre shunted by the transistor is to be less:


$$I_C = I_S - I_L$$

• The current through R_s:

$$I_{S} = \frac{V_{i} - V_{L}}{R_{S}}$$

Switching Regulator

- The switching regulator is a type of regulator circuit which its efficient transfer of power to the load is greater than series and shunt regulators because the transistor is not always conducting.
- The switching regulator passes voltage to the load in pulses, which then filtered to provide a smooth dc voltage.

