INDUCTION MOTOR-I (ASYNCHRONOUS MOTOR)

UNIT-III

Vinod Kumar Department of ECE

Equivalent circuit

Lecture No. 4

Conventional equivalent circuit

- ✤ Note:
 - Never use three-phase equivalent circuit. Always use perphase equivalent circuit.
 - The equivalent circuit always bases on the Y connection regardless of the actual connection of the motor.
 - Induction machine equivalent circuit is very similar to the single-phase equivalent circuit of transformer. It is composed of stator circuit and rotor circuit

Step1 Rotor winding is open

(The rotor will not rotate)

Note:

• The frequency of E_2 is the same as that of E_1 since the rotor is at standstill. At standstill s=1.

- V_1 stator voltage, per phase $(V_1 = V_{LL} / \sqrt{3})$
- R_1, R_2 stator and rotor winding resistance
- $X_1 = 2\pi f_1 L_1 \text{stator leakage reactance}$
- $X_2 = 2\pi f_1 L_2$ rotor leakage reactance
- R_c resistance representing core loss, per phase
- X_m magnetizing reactance, per phase
- N_1, N_2 effective number of turns of stator and rotor windings.
- $E_1 = 4.44 f_1 N_1 \Phi$, where Φ is flux per pole $E_2 = 4.44 f_1 N_2 \Phi$

Step2: Rotor winding is shorted

(Under normal operating conditions, the rotor winding is shorted. The slip is *s*)

> Note:

• The frequency of E_2 is $f_r = sf$ because **rotor is rotating**.

Step3: Eliminate f₂

Keep the rotor current same:

$$I_{2SC} = \frac{E_{2SC}}{R_{2SC} + jX_{2SC}} = \frac{sE_2}{R_2 + jsX_2} = \frac{E_2}{\frac{R_2}{s} + jX_2} = I_2$$

Step 4: Referred to the stator side

Note:

- X'₂ and R'₂ will be given or measured. In practice, we do not have to calculate them from above equations.
- Always refer the rotor side parameters to stator side.
- R_c represents core loss, which is the core loss of stator side.

> IEEE recommended equivalent circuit

> Note:

IEEE recommended equivalent circuit

> Note: $\frac{R_2}{s}$ can be separated into 2 PARTS $\frac{R_2}{s} = R_2 + \frac{R_2(1-s)}{s}$

> **Purpose** :

* to obtain the developed mechanical torque

EQUIVALENT CIRCUIT

We can rearrange the equivalent circuit as follows

