INDUCTION MOTOR-I (ASYNCHRONOUS MOTOR)

UNIT-III

Vinod Kumar Department of ECE

Torque and power equations

Lecture No. 5

TORQUE-EQUATION

Torque, can be derived from power equation in term of mechanical power or electrical power.

Power, $P = \omega T$, where $\omega = \frac{2\pi n}{60} (rad / s)$

Hence, $T = \frac{60P}{2\pi n}$

Thus,

Mechanical Torque, $T_m = \frac{60P_m}{2\pi n_r}$ Output Torque, $T_o = \frac{60P_o}{2\pi n_r}$

POWER LOSSES IN INDUCTION MACHINES

Copper losses

- Copper loss in the stator $(P_{SCL}) = I_1^2 R_1$
- Copper loss in the rotor $(P_{RCL}) = I_2^2 R_2$
- Core loss (P_{core})
- Mechanical power loss due to friction and windage
- > How this power flow in the motor?

POWER FLOW IN IM

POWER RELATIONS

$$P_{in} = \sqrt{3} V_L I_L \cos \theta = 3 V_{ph} I_{ph} \cos \theta$$
$$P_{SCL} = 3 I_1^2 R_1$$
$$P_{AG} = P_{in} - (P_{SCL} + P_{core})$$
$$P_{RCL} = 3 I_2^2 R_2$$
$$P_{conv} = P_{AG} - P_{RCL}$$
$$P_{out} = P_{conv} - (P_{f+w} + P_{stray})$$