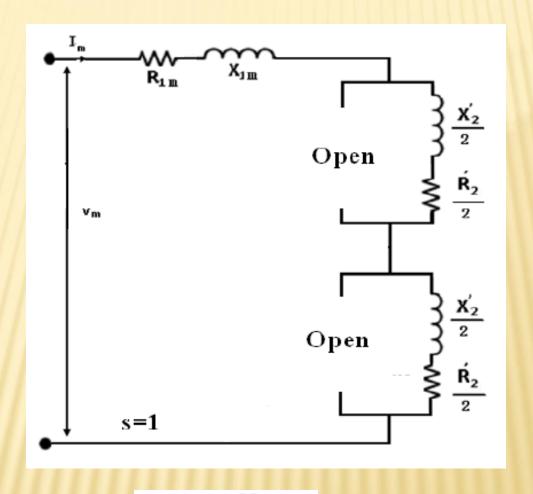
SINGLE PHASE INDUCTION MOTOR UNIT- V

Vinod Kumar HOD- ECE DGI, Greater Noida

Single Phase Induction Motor

No load and blocked rotor tests Lecture No. 4 & 5


NO LOAD AND BLOCKED ROTOR TESTS

The parameter of the equivalent circuit of single – phase induction motor can be determined from the blocked – rotor and no – load tests. These tests are performed with auxiliary winding kept open, except for the capacitor – run motor.

Blocked - rotor test

In this test the rotor is at rest (blocked). A low voltage is applied to the stator so that rated current flows in the main winding. The voltage (V_{scr}) , current (I_{scr}) and power input (P_{scr}) are measured. With the rotor blocked, s =1 the impedance $\frac{X_M}{2}$ in the equivalent circuit is so large compared with $(\frac{\hat{R}_2}{2} + j\frac{\hat{X}_2}{2})$ that it may be neglected from the equivalent circuit. Therefore the equivalent

$$Z_e = \frac{V_{scr}}{I_{scr}}$$

From above fig., the equivalent series resistance R_e of the motor is

$$R_e = R_{1m} + \frac{\acute{R_2}}{2} + \frac{\acute{R_2}}{2} = R_{1m} + \acute{R_2} = \frac{P_{scr}}{I_{scr}^2}$$

Since the resistance of the main stator winding R_{1m} is already measured, the effective rotor resistance at line frequency is given by

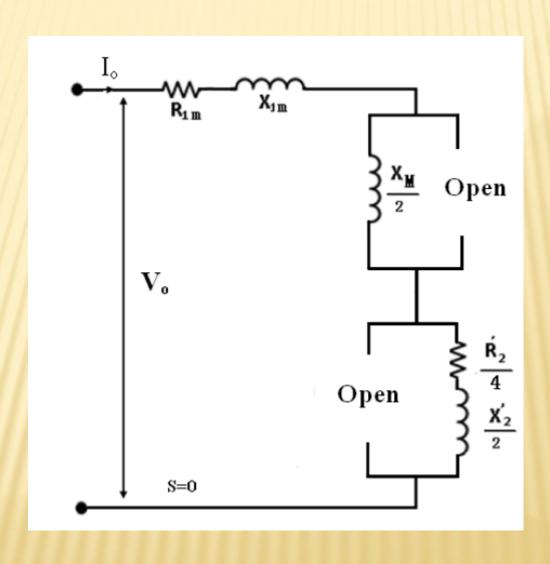
$$\vec{R}_2 = R_e - R_{1m} = \frac{P_{scr}}{I_{scr}^2} - R_{1m}$$

$$X_e = X_{1m} + \frac{\dot{X_2}}{2} + \frac{X_2}{2} = X_{1m} + \dot{X_2}$$

Since the leakage reactance X_{1m} and X_2 cannot be separated out we make a simplifying assumption that $X_{1m} = X_2$.

$$\therefore X_{1m} = X_2 = \frac{1}{2}X_e = \frac{1}{2}\sqrt{Z_e^2 - R_e^2}$$

Thus, from blocked - rotor test, the parameters \hat{R}_2 , \hat{X}_{1m} , \hat{X}_2 can be found if R_{1m} is known.



No - load test

The motor is run without load at rated voltage and rated frequency. The voltage(V_o), current(I_o) and input power (P_o) are measured. At no load, the slip s is very small close to zero and $\frac{\vec{K}_2}{2s}$ is very large as compared to $\frac{X_M}{2}$.

The resistance $\frac{\acute{R}_2}{2(2-S)} \cong \frac{\acute{R}_2}{4}$ associated with the backward rotating field is so small as compared to $\frac{X_M}{2}$, that the backward magnetizing current is negligible. Therefore, under no load conditions, the equivalent circuit becomes as shown in fig.

$$X_o = X_{1m} + \frac{X_M}{2} + \frac{X_2}{2}$$

Since X_{1m} and X_2 are already known from the blocked rotor test, the magnetizing reactance X_M can be calculated from above equation.

$$X_o = Z_o \sin \emptyset_o = Z_o \sqrt{1 - \cos^2 \emptyset_o}$$

$$\cos \phi_o = \frac{P_o}{V_0 I_o}$$

$$Z_o = \frac{V_0}{I_0}$$

Example

A 220 V, single – phase induction motor gave the following te results:

Blocked – rotor test: 120V, 9.6A, 460W

No – load test : 220V, 4.6A, 125W

The stator winding resistance is 1.5Ω , and during the blocked rotor test, the starting winding is open. Determine the equivale circuit parameters. Also, find the core, fraction and winday losses.

Solution

Blocked – rotor test

$$V_{scr}$$
=120V, I_{scr} = 9.6A, P_{scr} =460W

$$Z_e = \frac{V_{scr}}{I_{scr}} = \frac{120}{9.6} = 12.5\Omega$$

$$R_e = \frac{P_{scr}}{I_{scr}^2} = \frac{460}{(9.6)^2} = 4.99\Omega$$

$$X_e = \sqrt{Z_e^2 - R_e^2} = \sqrt{(12.5)^2 - (4.99)^2} = 11.46\Omega$$

$$X_{1m} = X_2 = \frac{1}{2}X_e = \frac{1}{2} * 11.46 = 5.73\Omega$$

$$R_{1m} = 1.5\Omega$$

$$R_e = R_{1m} + \acute{R_2}$$

$$\hat{R}_2 = R_e - R_{1m} = 4.99 - 1.5 = 3.49\Omega$$

No – load test: $V_o = 220 \text{V}, I_o = 4.6 \text{A}, P_o = 125 \text{W}$

$$\cos \phi_o = \frac{P_o}{V_0 I_o} = \frac{125}{220 * 4.6} = 0.1235$$

 $\therefore \quad \sin \emptyset_o = 0.9923$

$$Z_o = \frac{V_0}{I_0} = \frac{220}{4.6} = 47.83\Omega$$

$$X_o = Z_o \sin \phi_o = 47.83 * 0.9923 = 47.46\Omega$$

Core, fraction and windage losses

=power input to motor at no load – no load copper loss

$$= P_o - I_o^2 \left(R_{1m} + \frac{\dot{R}_2}{4} \right)$$

$$= 125 - (4.6)^2 \left(1.5 + \frac{3.49}{4} \right) = 74.8W$$