EIPC **NEE-403** Unit-2 Hall effect TRANSDUCERS **PRESENTATION BY:** K. D. Sharma Asstt. Prof. EEE Dept. DGI, Gr. Noida

Theory of the "Hall Effect"

Hall effect principle, magnetic

field present

Hall effect principle, no magnetic field

Potential Difference (voltage) across output:

V = I * B

Introduction

- The function of the Hall Sensor is based on the principle of the Hall Effect.
- A Voltage is generated transversely to the current flow direction, if a magnetic field is applied perpendicularly to the conductor.

Principle

 In the Semiconductor a voltage is created that is the effect of a magnetic field operating perpendicularly to the current.

Basic Hall Effect Sensor

- Hall element is the basic magnetic field sensor
- Differential Amplifier amplifies the potential difference (Hall voltage)
- **Regulator** holds current value so that the output of the sensor only reflects the intensity of the magnetic field

Hall Effect Sensor Example

SPECIFICATIONS				Digital Switch o
Hall Type				3 Wire (Voltage output)
SupplyVoltage (Note I)	Abso	lute Ratings	Vdc	-15 to +28
	Oper	ate	Vdc	+3.8 to +24
	Over	voltage Protection	Vdc-max	32
Output High Voltage			Vdc	sinking output
Output Low Voltage			Vdc-max	0.4 @ 10mA
Output Current (continuously on)			mA-max	10
Current Consumption over Temperature Range		Low	mA	1.6 - 5.2
		High	mA	1.6 - 5.2
Switching Speed			kHz-max	10
Temperature	Oper	ating	°C	-40 to +100
	Stora	ge	°C	-65 to +105

Application: Response to South or North Polarity

- Motor-Tachometer application where each rotation of the motor shaft is to be detected
- When ring magnet rotates w/ motor, South Pole passes the sensing face of the Hall sensor after each revolution.
- Sensor
 - Actuated when the South Pole approaches sensor
 - Deactuated when South Pole moves away from sensor
- Single digital pulse produced for each revolution.

Copyright © 2002 Dexter Magnetic Technologies Inc.

Application: Gear Tooth Sensing

• Sense movement of ferrous metal targets (magnetically biased)

- Sensor detects change in flux level
- Translates it into a change in the sensor output (high to low)

Applications (To Name a Few)

- Automotive Applications
- camshaft sensor
- crankshaft
- sensor ignition
- timing engine speed
- drive-by-wire
- brake-by-wire
- steer-by-wire
- throttle position sensor
- current measurement

- Industrial Applications
- commutation of brushless DC motors
- cooling fans
- RPM measurement
- wheel speed sensors
- angle sensor
- current measurement
- position measurement
- distance measurement

Typical Application – RPM Measurement

- By placing a Hall Sensor on the Camshaft Wheel.
- The rotating wheel modulates the field and the teeth of the wheel are detected
- The control signals can now be sent for computer control or motor management

Typical Application – RPM Measurement

Functional Principle

 Functional principle of a Hall sensor: The output voltage of the sensor and the switching state, respectively, depend on the magnetic flux density through the Hall plate.

Limitations

- High Sensitivity = High Cost
- Must create strong mounting HW
- Often need digital control though it is an analog sensor
- Operation Range
- Frequency Response
- Mechanical Voltage Offsets

Advantages

- Non-Intrusive You don't need to cut into mechanics very often
- Cheaper than Current Transformers
- Zero insertion loss
- >95% accuracy

Conclusions

- Hall sensors are ideal for non-intrusive sensing of rotational position and location detection
- Signal is used for analog and digital detection

Thank You