EIPC (NEE-403) Unit-4 **Display Devices &** Recorders

Wave Analyzers

- Complex Waveform is made up of a fundamental frequency and its harmonics.
- Wave Analyzers are used to measure the amplitude of fundamental frequency and each harmonics individually. (AF range only)
- Wave analyzers are also referred to as frequency selective voltmeters such that it is tuned to the frequency of one component whose amplitude is measured

Wave Analyzers

 The analyzer consists of a primary detector : LC circuit passes only the frequency to which it is tuned and provides a high attenuation to all other frequencies. The full wave rectifier is used to get the average value of the input signal. The indicating device is a D.C voltmeter, used to read the peak value of the sinusoidal

Fig. 9.1 mm (a) Basic Wave Analyzer

14

Heterodyne Wave Analyzer

 Heterodyne wave analyzers are used to analyze signal in the RF range and above (MHz range).

Heterodyne Wave Analyzer

Heterodyne Wave Analyzer

- Attenuator is used to modify the amplitude of the input signal .
- In this analyzer, the input signal is mixed with the internal signal to produce a higher IF frequency.
- The local oscillator is tunable to get all the frequency components of the input signal.
- The first mixer stage produces an output of 30Mhz which is a difference between the input and oscillator signal.
- This 30MHz signal will be amplified by IF amplifier and fed to the second mixer.

Heterodyne Wave Analyzer

• The second mixer will produce a 0 Hz signal which is the difference between IF and crystal oscillator signal

- This signal will then be filtered by the active filter of a bandwidth less than 1500Hz
- The amplitude of the selected frequency component can be read from the output meter in Volt or dB.
- This wave analyzer is operated in the RF range of 10kHz – 18MHz

Spectrum Analyser

- Oscilloscope is used to display and measure signal in a time domain.
- The instrument providing this frequency domain view is the spectrum analyzer
- A spectrum analyzer display signal on its CRT with frequency on the horizontal axis and amplitude (voltage) on the vertical axis.
- Spectrum analyzers use either a parallel filter bank or a swept frequency technique

Parallel filter bank Spectrum Analyzer

- In a parallel filter bank analyzer, the frequency range is covered by a series of filters whose central frequencies and bandwidth are so selected that they overlap each other
- Parallel filter bank Spectrum analyser

Spectrum analyzer (swept receiver design)

• For the RF or microwave signals, the swept technique is preferred

Spectrum analyzer using swept receiver design.

Spectrum Analyzer

Spectrum analyzer (swept receiver design)

- The sawtooth generator provides the sawtooth voltage which drives the horizontal movement of the scope and the frequency controlled element of the voltage tuned oscillator.
- The voltage tuned oscillator will sweep from fmin to fmax of its frequency band at a linear recurring rate.
- The frequency component and voltage tuned oscillator frequency beats together to produce a difference frequency, i.e. IF (intermediate frequency)
- This IF will be amplified and displayed on the CRT screen of the spectrum analyzer

Distortion Analyser

- Function of distortion analyzer : measures the total harmonic power in the test wave rather than the distortion caused by each component.
- Simplest method is to suppress the fundamental frequency of the signal with a notch filter , leaving only harmonics plus noise.

Distortion Analyser

• The total harmonic distortion (THD) can also be written as

$$THD = \frac{\sqrt{E_2^2 + E_3^2 + ... + E_n^2}}{E_f}$$

Where THD = the total harmonic distortion

• Ef = the amplitude of fundamental frequency including fundamental frequency. E2,E3 ... ,En = the amplitude of the individual harmonics

Distortion Analyzer

Consists of three main Parts
Input section with Impedance matcher, Notch filter and amplifier section, An output metering circuit.

Distortion Analyzer

• The input is impedence -matched t with the help of an attenuator and an impedance matcher.

 This signal is then preamplifier to a desired level and applied to a Wien bridge notch filter, tuned to reject the fundamental frequency and balanced for minimum output by adjusting the bridge controls.

Distortion Analyzer

 A feedback loop from the bridge amplifier output to the pre-amp input helps to eliminate any remaining contribution from the fundamental frequency

• The remaining signal after the fundamental has been suppressed, is amplified to a measurable level.

Thank You