NETWORK ANALYSIS AND SYNTHESIS

Unit 1

Graph Theory

Matrices of Oriented Graphs

- The edge e_{1} which has an orientation from vertex v_{1} to vertex v_{2} simply indicates that any transmission from v_{1} to v_{2} along e_{1} is assumed to be positive.
- Any transmission from v_{2} to v_{1} along e_{1} is assumed to be negative.

Matrices of Oriented Graphs

-DEFINITION: Let e and v represent respectively the number of edges and

Matrices of Oriented Graphs

Incident Matrix:

$$
\Pi=\left[\begin{array}{rrrrrrrrrrr|r}
\left(e_{1}\right) & \left(e_{2}\right) & \left(e_{3}\right) & \left(e_{4}\right) & \left(e_{5}\right) & \left(e_{6}\right) & \left(e_{7}\right) & \left(e_{8}\right) & \left(e_{9}\right) & \left(e_{10}\right) & \left(e_{11}\right) & \\
\hline 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \left(v_{1}\right) \\
-1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \left(v_{2}\right) \\
0 & -1 & -1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \left(v_{3}\right) \\
0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & \left(v_{4}\right) \\
0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & -1 & 0 & \left(v_{5}\right) \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 1 & \left(v_{6}\right) \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & -1 & \left(v_{7}\right) \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 & \left(v_{8}\right)
\end{array}\right]
$$

Property:
Any column of Π contains exactly two nonzero entries of opposite sign.

Matrices of Oriented Graphs

-Property: The determinant of any square submatrix of order $q(1 \leq q \leq v)$ of Π is either one of the following values: $1,-1,0$.

- Now, consider a graph G of p connected parts:

$$
\Pi=\left[\begin{array}{llll|l}
E_{1} & E_{2} & \cdots & E_{p} & \\
\hline \Pi_{1} & 0 & \cdots & 0 & V_{1} \\
0 & \Pi_{2} & \cdots & 0 & V_{2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \Pi_{p} & V_{p}
\end{array}\right]
$$

THANKS....

Queries Please...

