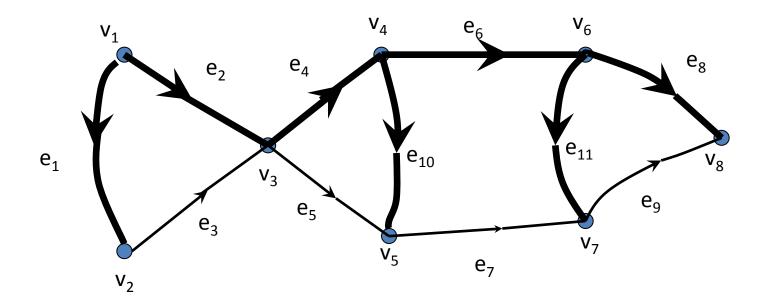
NETWORK ANALYSIS AND SYNTHESIS

Unit 1

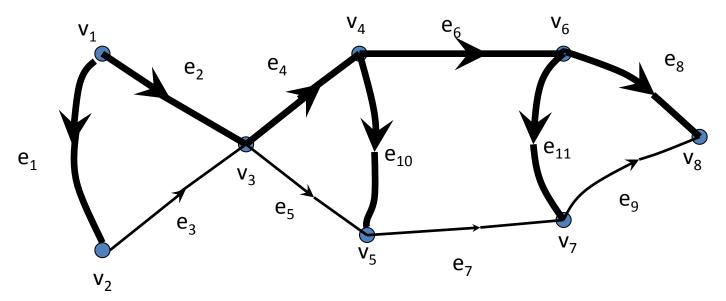
Graph Theory



- The edge e₁ which has an orientation from vertex v₁ to vertex v₂ simply indicates that any transmission from v₁ to v₂ along e₁ is assumed to be positive.
- Any transmission from v₂ to v₁ along e₁ is assumed to be negative.

•DEFINITION: Let e and v represent respectively the number of edges and vertices of a graph $G_{\prod_{ij}}$ the incident matrix

having v rows and e columns is defined as if edge e_j is incident at vertex v_i and is oriented away from v_i $\pi_{ij} = \begin{cases} -1 & \text{if edge } e_j \text{ is incident at vertex } v_i \text{ and is oriented toward } v_i \\ 0 & \text{if edge } e_j \text{ is not incident on vertex } v_i \end{cases}$



Incident Matrix:

	$\left[\left(e_{1}\right)\right]$	(e_2)	(e_3)	(e_4)	(e_5)	(e_6)	(e_7)	(e_8)	(e_9)	(e_{10})	(e_{11})	
Π=	1	1	0	0	0	0	0	0	0	0	0	(v_1)
	-1	0	1	0	0	0	0	0	0	0	0	(v_2)
	0	-1	-1	1	1	0	0	0	0	0	0	(v_3)
	0	0	0	-1	0	1	0	0	0	1	0	(v_4)
	0	0	0	0	-1	0	1	0	0	-1	0	(v_5)
	0	0	0	0	0	-1	0	1	0	0	1	(v_6)
	0	0	0	0	0	0	-1	0	1	0	-1	(v_7)
	0	0	0	0	0	0	0	-1	-1	0	0	(v_8)

Property:

Any column of Π contains exactly two nonzero entries of opposite sign.

•Property: The determinant of any square submatrix of order q ($1 \le q \le v$) of Π is either one of the following values: 1, -1, 0.

•Now, consider a graph G of p connected parts: $\begin{bmatrix} E_1 & E_2 & \cdots & E_n \end{bmatrix}$

$$\Pi = \begin{vmatrix} E_1 & E_2 & \cdots & E_p \\ \overline{\Pi_1} & 0 & \cdots & 0 & V_1 \\ 0 & \Pi_2 & \cdots & 0 & V_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \Pi_p & V_p \end{vmatrix}$$

THANKS....

Queries Please...