NETWORK ANALYSIS AND SYNTHESIS

Unit 1

Graph Theory

Matrices of Oriented Graphs

•Property: The determinant of any square submatrix of order q ($1 \le q \le v$) of Π is either one of the following values: 1, -1, 0.

•Now, consider a graph G of p connected parts: $\begin{bmatrix} E_1 & E_2 & \cdots & E_n \end{bmatrix}$

$$\Pi = \begin{vmatrix} E_1 & E_2 & \cdots & E_p \\ \overline{\Pi_1} & 0 & \cdots & 0 & V_1 \\ 0 & \Pi_2 & \cdots & 0 & V_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \Pi_p & V_p \end{vmatrix}$$

Matrices of Oriented Graphs

- DEFINITION: For a connected graph G, the matrix Π, obtained by deleting any one of the rows of the incidence matrix is called the reduced incident matrix.
- Note that since any column of Π contains exactly two nonzero entries of opposite sign, one can uniquely determine the incident matrix when the reduced incident matrix is given.

Matrices of Oriented Graphs

•Property: Any square submatrix Π_i of order v-1 of the reduced incidence matrix Π of G is nonsingular if and only if the columns of Π_i correspond to the branches of a tree T of G.

THANKS....

Queries Please...