NETWORK ANALYSIS AND SYNTHESIS

Unit 1

Graph Theory

Matrices of Oriented Graphs

-Property: The determinant of any square submatrix of order $q(1 \leq q \leq v)$ of Π is either one of the following values: $1,-1,0$.

- Now, consider a graph G of p connected parts:

$$
\Pi=\left[\begin{array}{llll|l}
E_{1} & E_{2} & \cdots & E_{p} & \\
\hline \Pi_{1} & 0 & \cdots & 0 & V_{1} \\
0 & \Pi_{2} & \cdots & 0 & V_{2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \Pi_{p} & V_{p}
\end{array}\right]
$$

Matrices of Oriented Graphs

- DEFINITION: For a connected graph G, the matrix Π, obtained by deleting any one of the rows of the incidence matrix is called the reduced incident matrix.
- Note that since any column of Π contains exactly two nonzero entries of opposite sign, one can uniquely determine the incident matrix when the reduced incident matrix is given.

Matrices of Oriented Graphs

- Property: Any square submatrix Π_{i} of order $v-1$ of the reduced incidence matrix Π of G is nonsingular if and only if the columns of Π_{i} correspond to the branches of a tree T of G.

THANKS....

Queries Please...

