NETWORK ANALYSIS AND SYNTHESIS

Unit 1

Graph Theory

Matrices of Oriented Graphs

-In a graph G let k be the number of circuits and let an arbitrary circuit orientation be assigned to each one of these circuits.
-DEFINITION: The ${ }^{B}$ circhuit matrix
for a graph G of e edges and k circuits is definedf alge e_{j} is in the circuit c_{i} and the orientations of e_{j} and c_{i} are coincident
$b_{i j}= \begin{cases}-1 & \text { if edge } \mathrm{e}_{\mathrm{j}} \text { is in the circuit } \mathrm{c}_{\mathrm{i}} \text { and the orientations of } \mathrm{e}_{\mathrm{j}} \text { and } \mathrm{c}_{\mathrm{i}} \text { are opposite } \\ 0 & \text { if edge } \mathrm{e}_{\mathrm{j}} \text { is not in the circuit } \mathrm{c}_{\mathrm{i}}\end{cases}$

Matrices of Oriented Graphs

- Consider the following graph

$$
\mathbf{B}=\left[\begin{array}{rrrrrr|r}
e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} & \\
\hline-1 & 1 & 0 & 0 & 0 & 0 & c_{1} \\
0 & -1 & 1 & 1 & 0 & 0 & c_{2} \\
-1 & 0 & 1 & 1 & 0 & 0 & c_{3} \\
0 & 0 & 0 & -1 & 1 & 1 & c_{4} \\
-1 & 0 & 1 & 0 & 1 & 1 & c_{5} \\
0 & -1 & 1 & 0 & 1 & 1 & c_{6}
\end{array}\right]
$$

Matrices of Oriented Graphs

- Let \mathbf{b}_{i} represent the row of \mathbf{B} that corresponds to circuit c_{i}. The circuits c_{i}, \ldots, c_{j} are independent if the rows $\mathbf{b}_{i}, \ldots \mathbf{b}_{j}$ are independent.
-DEFINITION: The f-circuit matrix \mathbf{B}_{f} of a graph G with respect to some tree T is defined as the circuit matrix consisting of the fundamental circuits of G only whose orientations are chosen in the same direction as that of defining chords.

Matrices of Oriented Graphs

-The fundamental circuit matrix \mathbf{B}_{f} of a graph
G with respect to some tree T can always be

THANKS....

Queries Please...

