NETWORK ANALYSIS AND SYNTHESIS

Unit 1

Graph Theory

In a graph G let k be the number of circuits and let an arbitrary circuit orientation be assigned to each one of these circuits.
DEFINITION: The circuit matrix

for a graph G of e edges and k circuits is defined $\mathbf{a} \mathbf{s} \mathbf{e} \mathbf{e}_{j}$ is in the circuit \mathbf{c}_{i} and the orientations of \mathbf{e}_{j} and \mathbf{c}_{i} are coincident $b_{ij} = \begin{cases} -1 & \text{if edge } \mathbf{e}_{j} \text{ is in the circuit } \mathbf{c}_{i} \text{ and the orientations of } \mathbf{e}_{j} \text{ and } \mathbf{c}_{i} \text{ are opposite} \\ 0 & \text{if edge } \mathbf{e}_{j} \text{ is not in the circuit } \mathbf{c}_{i} \end{cases}$

$$\mathbf{B} = \begin{bmatrix} e_1 & e_2 & e_3 & e_4 & e_5 & e_6 \\ \hline -1 & 1 & 0 & 0 & 0 & 0 & c_1 \\ 0 & -1 & 1 & 1 & 0 & 0 & c_2 \\ -1 & 0 & 1 & 1 & 0 & 0 & c_3 \\ 0 & 0 & 0 & -1 & 1 & 1 & c_4 \\ -1 & 0 & 1 & 0 & 1 & 1 & c_5 \\ 0 & -1 & 1 & 0 & 1 & 1 & c_6 \end{bmatrix}$$

- •Let **b**_i represent the row of **B** that corresponds to circuit c_i. The circuits c_i,...,c_j are independent if the rows **b**_i,... **b**_i are independent.
- •DEFINITION: The f-circuit matrix **B**_f of a graph G with respect to some tree T is defined as the circuit matrix consisting of the fundamental circuits of G only whose orientations are chosen in the same direction as that of defining chords.

•The fundamental circuit matrix $\mathbf{B}_{\mathbf{f}}$ of a graph G with respect to some tree T can always be written as $\mathbf{B}_{\mathbf{f}} = \begin{bmatrix} \mathbf{B} & \mathbf{U} \\ \mathbf{B} & \mathbf{U} \end{bmatrix} (\mu)$

THANKS....

Queries Please...