NETWORK ANALYSIS AND SYNTHESIS

2.8 – Reciprocity Theorem

Solution The reciprocity theorem is applicable only to single-source networks and states the following:

- The current *I* in any branch of a network, due to a single voltage source *E* anywhere in the network, will equal the current through the branch in which the source was originally located if the source is placed in the branch in which the current *I* was originally measured.
 - The location of the voltage source and the resulting current may be interchanged without a change in current

Compensation Theorem

- In any linear bilateral active network, if any branch carrying a current I has its impedance Z
- changed by an amount ΔZ, the resulting changes that occur in the other branches are the same
- as those which would have been caused by the injection of a voltage source of (-) Ι. ΔZ in the modified branch.

Circuit

Verification

- Consider the voltage drop across the modified branch.
- V+ Δ V = (Z+ Δ Z)(I+ Δ I) = Z . I + Δ Z . I + (Z + Δ Z) . Δ I from the original network, V = Z . I
- $\therefore \Delta V = \Delta Z \cdot I + (Z + \Delta Z) \cdot \Delta I$

Example

$$R = 160 - 28.333 = 131.67 \Omega$$

$$i = \frac{85}{10 + 131.667} = 0.6 A$$

THANKS....

Queries Please...