NETWORK ANALYSIS AND SYNTHESIS

Unit – II:

Network Theorems (Applications to AC Networks)

- Superposition theorem,
- Thevenin's theorem,
- Norton's theorem,
- Maximum power transfer theorem,
- Reciprocity theorem
- Millman's theorem
- Compensation theoremTellegen's theorem.

Tellegen's Theorem

- Tellegen's Theorem is a general network theorem
- It is valid for any lump network

For a lumped network whose element assigned by associate reference direction for branch voltage v_{k} nd branch current j_{k}

If all branch voltages and branch currents satisfy KVL and KCL then

$$\sum_{k=1}^{b} v_k j_k = 0 \qquad b = \text{number of branch}$$

Tellegen's Theorem

Suppose that $\hat{v}_1, \hat{v}_2, \dots$ and \hat{v}_b voltages and branch currents and if

$$\hat{j}_1, \hat{j}_2, .$$
is an \hat{j}_t her sets of branch said striction of \hat{j}_t is fy KVL and KCL

Then

$$\sum_{k=1}^b \hat{v}_k \, \hat{j}_k = 0$$

$$\sum_{k=1}^b v_k \, j_k = 0$$
 and
$$\sum_{k=1}^b \hat{v}_k \, j_k = 0$$

$$\sum_{k=1}^b \hat{v}_k \, j_k = 0$$

Tellegen's Theorem

Applications

Tellegen's Theorem implies the law of energy conservation.

Since
$$\sum_{k=0}^{b} v_k j_k = 0$$

"The sum of power delivered by the independent sources to the network is equal to the sum of the power absorbed by all branches of the network".

THANKS....

Queries Please...