NETWORK ANALYSIS AND SYNTHESIS Unit – IV Network Functions

Network Functions

- Concept of complex frequency,
- Transform impedances network functions of one port and two port networks,
- Concept of poles and zeros,
- Properties of driving point and transfer functions

Two Port Networks-

- Characterization of LTI two port networks;
- Z, Y, ABCD, A'B'C'D', g and h parameters,
- Reciprocity and symmetry,
- Inter-relationships between the parameters, Interconnections of two port networks,
- Ladder and Lattice networks: T & П representation.

Two Port Networks

Generalities:

The standard configuration of a two port:

The network ?

The voltage and current convention ?

* notes

Two Port Networks

Network Equations:

Impedance
Z parameters
$$V_1 = z_{11}l_1 + z_{12}l_2$$

 $V_2 = z_{21}l_1 + z_{22}l_2$ $V_2 = b_{11}V_1 - b_{12}l_1$
 $l_2 = b_{21}V_1 - b_{22}l_1$ Admittance
Y parameters $I_1 = y_{11}V_1 + y_{12}V_2$
 $l_2 = y_{21}V_1 + y_{22}V_2$ Hybrid
H parameters $V_1 = h_{11}l_1 + h_{12}V_2$
 $l_2 = h_{21}l_1 + h_{22}V_2$ Transmission
A, B, C, D
parameters $V_1 = AV_2 - Bl_2$
 $l_1 = CV_2 - Dl_2$ $I_1 = g_{11}V_1 + g_{12}l_2$
 $V_2 = g_{21}V_1 + g_{22}l_2$

* notes

Two Port Networks

Z parameters:

$$z_{11} = \frac{V_1}{I_1} | I_2 = 0$$

$$V_{12} = \frac{V_1}{I_2} | I_1 = 0$$

z₁₁ is the impedance seen looking into port 1 when port 2 is open.

z₁₂ is a transfer impedance. It is the ratio of the voltage at port 1 to the current at port 2 when port 1 is open.

$$z_{21} = \frac{V_2}{I_1} | I_2 = 0$$

z₂₁ is a transfer impedance. It is the ratio of the voltage at port 2 to the current at port 1 when port 2 is open.

$$z_{22} = \frac{V_2}{I_2} | I_1 = 0$$

z₂₂ is the impedance seen looking into port 2 when port 1 is open.

THANKS....

Queries Please...