NETWORK ANALYSIS AND SYNTHESIS

Two Port Networks

Z parameters: Example 2 (continue p2)

$$
z_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{I_{2}=0}
$$

$I_{1}=\frac{V_{x}}{1}+\frac{V_{x}+2 V_{x}}{6}=\frac{6 V_{x}+V_{x}+2 V_{x}}{6}$

$I_{1}=\frac{3 V_{x}}{2} ;$ but $V_{x}=V_{1}-I_{1}$
Substituting gives;

$$
I_{1}=\frac{3\left(V_{1}-I_{1}\right)}{2} \quad \text { or } \quad \frac{V_{1}}{I_{1}}=z_{11}=\frac{5}{3} \Omega
$$

$$
\begin{aligned}
& \mathrm{Z}_{12}=0.222 \Omega \\
& \mathrm{Z}_{22}=1.111 \Omega
\end{aligned}
$$

Two Port Networks

Transmission parameters (A,B,C,D):
The defining equations are:

$$
\begin{aligned}
& {\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{c}
V_{2} \\
-I_{2}
\end{array}\right]} \\
& A=\left.\frac{V_{1}}{V_{2}}\right|_{I_{2}=0} \quad B=\left.\frac{V_{1}}{-I_{2}}\right|_{V_{2}=0} \\
& C=\frac{I_{1}}{V_{2}} \left\lvert\, \begin{array}{ll}
I_{2}=0 & \left.D=\frac{I_{1}}{-I_{2}} \right\rvert\, V_{2}=0
\end{array}\right.
\end{aligned}
$$

Two Port Networks

Transmission parameters (A,B,C,D):

Example

Given the network below with assumed voltage polarities and Current directions compatible with the A,B,C,D parameters.

We can write the following equations.

$$
\begin{aligned}
& V_{1}=\left(R_{1}+R_{2}\right) I_{1}+R_{2} I_{2} \\
& V_{2}=R_{2} I_{1}+R_{2} I_{2}
\end{aligned}
$$

It is not always possible to write 2 equations in terms of the V's and I's Of the parameter set.

Two Port Networks

Transmission parameters (A,B,C,D):
Example (cont.)

$$
\begin{aligned}
& V_{1}=\left(R_{1}+R_{2}\right) I_{1}+R_{2} I_{2} \\
& V_{2}=R_{2} I_{1}+R_{2} I_{2}
\end{aligned}
$$

From these equations we can directly evaluate the A, B, C, D parameters.

$$
\begin{array}{ll}
A=\left.\frac{V_{1}}{V_{2}}\right|_{\mathrm{I}_{2}=0}=\square & \left.B=\frac{V_{1}}{-I_{2}} \right\rvert\, V_{2}=0=\square \\
C=\left.\frac{I_{1}}{V_{2}}\right|_{\mathrm{I}_{2}=0}=\square & \left.D=\frac{I_{1}}{-I_{2}} \right\rvert\, \\
V_{2}=0
\end{array}
$$

Later we will see how to interconnect two of these networks together for a final answer * notes

Two Port Networks

Hybrid Parameters:
The equations for the hybrid parameters are:

$$
\begin{aligned}
& {\left[\begin{array}{l}
V_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
V_{2}
\end{array}\right]} \\
& h_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{V_{2}=0} \quad h_{12}=\left.\frac{V_{1}}{V_{2}}\right|_{I_{1}=0} \\
& h_{21}=\left.\frac{I_{2}}{I_{1}}\right|_{V_{2}=0} \quad h_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{I_{1}=0}
\end{aligned}
$$

THANKS....

Queries Please...

