NETWORK ANALYSIS AND SYNTHESIS

Two Port Parameter Conversions:

To go from one set of parameters to another, locate the set of parameters you are in, move along the vertical until you are in the row that contains the parameters you want to convert to – then compare element for element

Interconnection Of Two Port Networks

Three ways that two ports are interconnected:

Y parameters

$$[y] = [y_a] + [y_b]$$

* Series

Z parameters

$$[z] = [z_a] + [z_b]$$

ABCD parameters

$$[T] = [T_a][T_b]$$

Interconnection Of Two Port Networks

Consider the following network:

Find
$$\frac{V_2}{V_1}$$
 V_1
 V_1
 V_2
 V_1
 V_2
 V_1
 V_2
 V_2
 V_3
 V_4
 V_4
 V_4
 V_5
 V_7
 V_8
 V_8
 V_8
 V_8
 V_8
 V_8
 V_8
 V_8
 V_9
 V

Referring to slide 13 we have;

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} \frac{R_1 + R_2}{R_2} & R_1 \\ \frac{1}{R_2} & 1 \end{bmatrix} \begin{bmatrix} \frac{R_1 + R_2}{R_2} & R_1 \\ \frac{1}{R_2} & 1 \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix}$$

Interconnection Of Two Port Networks

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} \frac{R_1 + R_2}{R_2} & R_1 \\ \frac{1}{R_2} & 1 \end{bmatrix} \begin{bmatrix} \frac{R_1 + R_2}{R_2} & R_1 \\ \frac{1}{R_2} & 1 \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix}$$

Multiply out the first row:

$$V_{1} = \left[\left[\left(\frac{R_{1} + R_{2}}{R_{2}} \right)^{2} + \frac{R_{1}}{R_{2}} \right] V_{2} + \left[\left(\frac{R_{1} + R_{2}}{R_{2}} \right) R_{1} + R_{1} \right] (-I_{2}) \right]$$

Set $I_2 = 0$ (as in the diagram)

$$\frac{V_2}{V_1} = \frac{R_2^2}{R_1^2 + 3R_1R_2 R_2^2}$$

Can be verified directly by solving the circuit

THANKS....

Queries Please...