NETWORK ANALYSIS AND SYNTHESIS

• Substituting $\omega = 2\pi f$ and $CR = 1/2\pi f_c$ in the earlier equation gives

$$\frac{v_o}{v_i} = \frac{1}{1 - j\frac{1}{\omega CR}} = \frac{1}{1 - j\frac{1}{(2\pi f)\left(\frac{1}{2\pi f_c}\right)}} = \frac{1}{1 - j\frac{f_c}{f}}$$

- This is the general form of the gain of the circuit
- It is clear that both the *magnitude* of the gain and the *phase angle* vary with frequency

- Consider the behaviour of the circuit at different frequencies:
- When *f* >> *f*_c

 $-f_c/f \ll 1$, the voltage gain ≈ 1

• When $f_{v_o} = f_{c_1}$ $\frac{V_o}{V_i} = \frac{f_{c_1}}{1 - j\frac{f_c}{f}} = \frac{1}{1 - j} = \frac{1 \times (1 + j)}{(1 - j) \times (1 + j)} = \frac{(1 + j)}{2} = 0.5 + 0.5j$

• When
$$f \ll f_c$$
 $\frac{v_o}{v_i} = \frac{1}{1-j\frac{f_c}{f}} \approx \frac{1}{-j\frac{f_c}{f}} = j\frac{f}{f_c}$

• The behaviour in these three regions can be illustrated using phasor diagrams

• At *low* frequencies the gain is linearly related to frequency. It falls at -6dB/octave (-20dB/decade)

- Frequency response the high-pass network
 - the gain response ha two *asymptotes* that meet at the cut-off frequency
 - figures of this form a called Bode diagram

A Low-Pass RC Network

• Transposing the C and R giv

$$\frac{v_o}{v_i} = \frac{\mathbf{Z}_{\mathbf{C}}}{\mathbf{Z}_{\mathbf{R}} + \mathbf{Z}_{\mathbf{C}}} = \frac{-j\frac{1}{\omega C}}{R - j\frac{1}{\omega C}} = \frac{1}{1 + j\omega CR}$$

- At high frequencies
 - $-\omega$ is large, voltage gain $\rightarrow 0$
- At low frequencies
 - ω is small, voltage gain \approx 1

A Low-Pass RC Network

A similar analysis to before gives

$$|\text{Voltage gain}| = \frac{1}{\sqrt{1 + (\omega CR)^2}}$$

• Therefore when, when $\omega CR = 1$

$$|Voltage gain| = \frac{1}{\sqrt{1+1}} = \frac{1}{\sqrt{2}} = 0.707$$

• Which is the cut-off frequency

THANKS....

Queries Please...