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POWER SYSTEM ANALYSISPOWER SYSTEM ANALYSIS  



UNIT IUNIT I  

 

INTRODUCTION 



Power system networkPower system network  



SINGLE LINE DIAGRAMSINGLE LINE DIAGRAM  

  

 It is a diagrammatic representation of a power 
system in which the components are represented 

by their symbols.   

 



COMPONENTS OF A POWER COMPONENTS OF A POWER 
SYSTEMSYSTEM  

1.Alternator 

2.Power transformer 

3.Transmission lines 

4.Substation transformer 

5.Distribution transformer 

6.Loads 



  
MODELLING OF GENERATOR AND MODELLING OF GENERATOR AND 
SYNCHRONOUS MOTORSYNCHRONOUS MOTOR  
  

                                   

1Φ equivalent circuit of generator 1Φ equivalent circuit of synchronous motor 



MODELLING OF TRANSFORMERMODELLING OF TRANSFORMER  
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=Equivalent resistance referred to 1o 

=Equivalent reactance referred to 1o 



MODELLING OF TRANSMISSION MODELLING OF TRANSMISSION 
LINELINE  
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MODELLING OF INDUCTION MOTORMODELLING OF INDUCTION MOTOR  
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per unit=actual value/base value 

Let KVAb=Base KVA 

kVb=Base voltage 

Zb=Base impedance in Ω 

 

 



Changing the base of per unit Changing the base of per unit 
quantitiesquantities  

Let  z = actual impedance(Ω) 

            = base impedance (Ω) 
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ADVANTAGES OF PER UNIT ADVANTAGES OF PER UNIT 
CALCULATIONSCALCULATIONS  

The p.u impedance referred to either side of a 1Φ 
transformer is same 

The manufacturers provide the impedance value 
in p.u 

The p.u impedance referred to either side of a 3Φ 
transformer is same regardless of the 3Φ 
connections Y-Y,Δ-Y 

  p.u value always less than unity. 



IMPEDANCE DIAGRAMIMPEDANCE DIAGRAM  

 This diagram obtained by replacing each 
component by their 1Φ equivalent circuit. 

  Following approximations are made  to draw 
impedance diagram 

  1. The impedance b/w neutral and ground 
omitted. 

  2. Shunt branches of the transformer equivalent 
circuit  

      neglected. 



REACTANCE DIAGRAMREACTANCE DIAGRAM  

 It is the equivalent circuit of the power system 
in which the various components are 
represented by their respective equivalent 
circuit. 

 

  Reactance diagram can be obtained after 
omitting all resistances & capacitances of the 
transmission line from impedance diagram. 



REACTANCE DIAGRAM FOR THE GIVEN REACTANCE DIAGRAM FOR THE GIVEN 
POWER SYSTEM NETWORKPOWER SYSTEM NETWORK  



PROCEDURE TO FORM REACTANCE PROCEDURE TO FORM REACTANCE 
DIAGRAM FROM SINGLE DIAGRAMDIAGRAM FROM SINGLE DIAGRAM  

1.Select a base power kVAb or MVAb  

2.Select a base voltage kVb 

3. The voltage conversion is achieved by means of transformer 
kVb on LT section= kVb on HT section x LT voltage rating/HT 
voltage rating 

4. When specified reactance of a component is in ohms 

    p.u reactance=actual reactance/base reactance 

    specified reactance of a component is in p.u 
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FAULT ANALYSISFAULT ANALYSIS--BALANCED BALANCED 
FAULTFAULT  

Need for fault analysis 
To determine the magnitude of fault current 

throughout the power system after fault 
occurs. 

To select the ratings for fuses, breakers and 
switchgear. 

To check the MVA ratings of the existing circuit 
breakers when new generators are added into 
a system. 



BALANCED THREE PHASE FAULT 
 
 All the three phases are short circuited to each other and to 

earth. 
 

 Voltages and currents of the system balanced after the 
symmetrical fault occurred. It is enough to consider any one 
phase for analysis. 

 

 
SHORT CIRCUIT CAPACITY 
 
    It is the product of magnitudes of the prefault voltage       

and the post fault current. 
   It is used to determine the dimension of a bus bar and the       

interrupting capacity of a circuit breaker. 
 
  
 

 



Short Circuit Capacity (SCC) 
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Procedure for calculating short Procedure for calculating short 
circuit capacity and fault currentcircuit capacity and fault current  

Draw a single line diagram and select common 
base Sb MVA and kV 

Draw the reactance diagram and calculate the 
total p.u impedance from the fault point to 
source (Thevenin impedance ZT) 

Determine SCC and If 



ALGORITHM FOR SHORT CIRCUIT ANALYSIS ALGORITHM FOR SHORT CIRCUIT ANALYSIS 
USING BUS IMPEDANCE MATRIXUSING BUS IMPEDANCE MATRIX  

 Consider a n bus network. Assume that three phase fault  

    is applied at bus k through a fault impedance zf 

  Prefault voltages at all the buses are 

        

           

          

 

 

 

 

 Draw the Thevenin equivalent circuit i.e Zeroing all voltage 
sources and add voltage source             at faulted bus k and 
draw the reactance diagram 
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 The change in bus voltage due to fault is 

 

 

 

 

 

 

 The bus voltages during the fault is 

 

 

 The current entering into all the buses is zero.the 
current entering into faulted bus k is –ve of the current 
leaving the bus k 
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UNIT IIUNIT II  

 

 

 

FAULT ANALYSIS – UNBALANCED 
FAULTS 



INTRODUCTIONINTRODUCTION  

 UNSYMMETRICAL FAULTS 

o One or two phases are involved 

o Voltages and currents become unbalanced and each phase 
is to be treated individually 

o The various types of faults are 

     Shunt type faults 

                 1.Line to Ground fault (LG) 

                 2. Line to Line fault (LL) 

                 3. Line to Line to Ground fault (LLG) 

    Series type faults 

          Open conductor fault (one or two conductor open 
fault) 

 

  

 



FUNDAMENTALS OF SYMMETRICAL FUNDAMENTALS OF SYMMETRICAL 
COMPONENTSCOMPONENTS  

   Symmetrical components can be used to 
transform   

      three phase unbalanced voltages and currents 
to 

      balanced voltages and currents 

  Three phase unbalanced phasors can be resolved 
into 

     following three sequences 

      1.Positive sequence components 

      2. Negative sequence components 

      3. Zero sequence components 

 



Positive sequence components 
   Three phasors with equal magnitudes, equally displaced from 

one another by 120o and phase sequence is same as that of 
original phasors.  

 
Negative sequence components 
   Three phasors with equal magnitudes, equally displaced from 

one another by 120o and phase sequence is opposite to that of 
original phasors. 

 
 
Zero sequence components 
   Three phasors with equal magnitudes and displaced from one 

another by 0o 
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RELATIONSHIP BETWEEN UNBALANCED RELATIONSHIP BETWEEN UNBALANCED 
VECTORS AND SYMMETRICAL COMPONENTSVECTORS AND SYMMETRICAL COMPONENTS  

0 1 2

0 1 2

0 1 2

0

2

1

2

2

2

2

1 1 1

1

1

1 1 1

1

1

a a a a

b b b b

c c c c

a a

b a

c a

V V V V

V V V V

V V V V

V V

V a a V

a aV V

A a a

a a

  

  

  

    
    

     
        

 
 

  
 
 

Similarly we can obtain for currents also 



SEQUENCE IMPEDANCESEQUENCE IMPEDANCE  

 Impedances offered by power system components 
to positive, negative and zero sequence currents. 

 Positive sequence impedance 
   The impedance of a component when positive 

sequence currents alone are flowing. 

 Negative sequence impedance 
   The impedance of a component when negative 

sequence currents alone are flowing. 

 Zero sequence impedance 
   The impedance of a component when zero 

sequence currents alone are flowing. 
 
 
 



SEQUENCE NETWORKSEQUENCE NETWORK  

SEQUENCE NETWORK FOR GENERATOR 

 

 

 

 

 

 

 

 

 

  
positive sequence network negative sequence network Zero sequence network 



SEQUENCE NETWORK FOR SEQUENCE NETWORK FOR 
TRANSMISSION LINETRANSMISSION LINE  

positive sequence network negative sequence network Zero sequence network 



SEQUENCE NETWORK FOR SEQUENCE NETWORK FOR 
TRANSFORMERTRANSFORMER  

positive sequence network negative sequence network Zero sequence network 



SEQUENCE NETWORK FOR LOADSEQUENCE NETWORK FOR LOAD  

positive sequence 

network 
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Zero sequence 
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SINGLE LINE TO GROUND FAULTSINGLE LINE TO GROUND FAULT  
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LINE TO LINE (LL) FAULTLINE TO LINE (LL) FAULT  
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DOUBLE LINE TO GROUND (LLG) FAULTDOUBLE LINE TO GROUND (LLG) FAULT  
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Consider a fault between phase b and c  

through an impedance zf to ground 



UNBALANCED FAULT ANALYSIS UNBALANCED FAULT ANALYSIS 
USING BUS IMPEDANCE MATRIXUSING BUS IMPEDANCE MATRIX  

SINGLE LINE TO GROUND FAULT USING Zbus 

   Consider a fault between phase a and ground through 

       an impedance zf at bus k 
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LINE TO LINE (LL) FAULTLINE TO LINE (LL) FAULT  
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DOUBLE LINE TO GROUND (LLG) DOUBLE LINE TO GROUND (LLG) 
FAULTFAULT  
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BUS VOLTAGES AND LINE BUS VOLTAGES AND LINE 
CURRENTS DURING FAULTCURRENTS DURING FAULT  
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ALGORITHM FOR FORMATION OF ALGORITHM FOR FORMATION OF 
THE BUS IMPEDANCE MATRIXTHE BUS IMPEDANCE MATRIX  

 Modification of Zbus matrix involves any one of the following 4 
cases 

 
Case 1:adding a branch impedance zb from a new bus p to  
             the reference bus 
           Addition of new bus  will increase the order the Zbus matrix 

by 1 
 
 
 
 
 
    
 
   (n+1)th column and row elements are zero except the diagonal 
    diagonal element is zb 
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Case 2: adding a branch impedance zb from a new bus p 

              to the existing bus q  

             Addition of new bus  will increase the order the Zbus matrix by 
1 

             The elements of (n+1)th column and row are the elements of  

             qth column and row and the diagonal element is Zqq+Zb 

 

Case 3:adding a branch impedance zb from an existing bus p to  

             the reference bus 

            The elements of (n+1)th column and row are the elements of  

             qth column and row and the diagonal element is Zqq+Zb and  
             (n+1)th row and column should be eliminated using the 

following 

              formula  
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Case 4:adding a branch impedance zb between existing buses h 
and q elements of (n+1)th column are elements of bus h 
column – 

             

 bus q column and elements of (n+1)th row are elements of  

             bus h row – bus q row the diagonal element= 

              

 

and (n+1)th row and column should be eliminated using the 
following 

              formula  
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                                          UNITUNIT  IIIIII  
  
  

LOAD FLOW ANALYSIS LOAD FLOW ANALYSIS   



BUS CLASSIFICATIONBUS CLASSIFICATION  

1.Slack bus or Reference bus or Swing bus: 

   |V| and δ are specified. P and Q are un specified, 
and to be calculated. 

 

2.Generator bus or PV bus or Voltage controlled bus: 

   P and |V| are specified. Q and δ are un specified, 
and to be calculated  

3.Load bus or PQ bus: 

   P and Q are specified. |V| and δ are un specified, 

and to be calculated  
 
 



PRIMITIVE NETWORKPRIMITIVE NETWORK    
   It is a  set of unconnected elements which provides 

information regarding the characteristics of individual 
elements. it can be represented both in impedance & 
admittance form 



BUS ADMITTANCE(Y BUS) MATRIXBUS ADMITTANCE(Y BUS) MATRIX  
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Y BUS can be formed by 2 methods 

1.Inspection method 

2.Singular transformation 

 

 

                    

 

Y BUS =  



INSPECTION METHODINSPECTION METHOD  

For n bus system 

Diagonal element of Y BUS 

  

 

 

Off Diagonal element of Y BUS 
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SINGULAR TRANSFORMATION SINGULAR TRANSFORMATION 
METHODMETHOD  

 

Y BUS =  

Where [y]=primitive admittance 

             A=bus incidence matrix        

 

 TA y A



ITERATIVE METHODITERATIVE METHOD  

 
 
 
 
 

 
The above Load flow equations are non linear and 
 can be solved by following iterative methods. 
 
1.Gauss seidal method 
2.Newton Raphson method 

3.Fast Decoupled method  
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GAUSS SEIDAL METHODGAUSS SEIDAL METHOD  
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For load bus calculate |V| and δ from Vp
k+1 equation  

For generator bus calculate Q from QP
K+1 equation  
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 Check Qp,cal
k+1 with the limits of Qp 

 
 If Qp,cal

k+1 lies within the limits bus p remains as 
PV bus otherwise it will change to load bus 
 

 Calculate δ for PV bus from Vp
k+1 equation 

 Acceleration factor α can be used for faster 
convergence 

 
 Calculate change in bus-p voltage 

 
 
 

 If |ΔVmax |< ε, find slack bus power otherwise 
increase the iteration count (k) 
 

 Slack bus power= 
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NEWTON RAPHSON METHODNEWTON RAPHSON METHOD  
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 Calculate |V| and δ from the following equation 
 

 

 

 

 If                       
 

 

 stop the iteration otherwise increase the iteration 
count (k) 
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FAST DECOUPLED METHODFAST DECOUPLED METHOD  

 J2 & J3 of Jacobian matrix are zero 

 
1

4

1

4

'

''

1
'

1
''

0

0

i

i

JP

VJQ

P
P J

Q
Q J V V

V

P
B

V

Q
B V

V

P
B

V

Q
V B

V



 









    
          

 
      

 
     

 


  




  




      


      



1

1

k k k

i i

k k k

i i iV V V

  



  

  

This method requires more iterations than NR   

     method but less time per iteration 

It is useful for in contingency analysis 

 

 

 



COMPARISION BETWEEN COMPARISION BETWEEN 
ITERATIVE METHODSITERATIVE METHODS  

Gauss – Seidal Method 

1. Computer memory requirement is less. 

2. Computation time per iteration is less. 

3. It requires less number of arithmetic 
operations to complete an iteration and 
ease in programming. 

4. No. of iterations are more for convergence 
and  rate of convergence is slow (linear 
convergence characteristic. 

5. No. of iterations increases with the 
increase of no. of buses. 

 

 



NEWTON NEWTON ––  RAPHSON METHODRAPHSON METHOD  

 Superior convergence because of quadratic 
convergence. 

 It has an 1:8 iteration ratio compared to GS method. 

 More accurate. 

 Smaller no. of iterations and used for large size 
systems. 

 It is faster and no. of iterations is independent of the 
no. of buses. 

 Technique is difficult and calculations involved in each 
iteration are more and thus computation time per 
iteration is large. 

 Computer memory requirement is large, as the 
elements of jacobian matrix are to be computed in 
each iteration. 

 Programming logic is more complex. 

 



FAST DECOUPLED METHODFAST DECOUPLED METHOD  

 It is simple and computationally efficient. 

  Storage of jacobian matrix elements are60% of 
NR method 

 computation time per iteration is less. 

Convergence is geometric,2 to 5 iterations 
required for accurate solutions 

Speed for iterations is 5 times that of NR 
method and 2-3 times of GS method 

 

 

 

 

 



 

  

UNIT IVUNIT IV  

  

STABILITY ANALYSISSTABILITY ANALYSIS  



STABILITY 

The tendency of a power system to develop 
restoring forces equal to or greater than the 
disturbing forces to maintain the state of 
equilibrium. 

Ability to keep the machines in synchronism 
with another machine 

 



CLASSIFICATIONCLASSIFICATION  OF STABILITYOF STABILITY  

 Steady state stability 
        Ability of the power system to regain synchronism 

after small and slow disturbances (like gradual power 
changes) 

 
 Dynamic stability 
     Ability of the power system to regain synchronism 

after small disturbances occurring for a long time (like 
changes in turbine speed, change in load) 

 
 Transient stability 
     This concern with sudden and large changes in the 

network conditions i.e. .  sudden changes in 
application or removal of loads, line switching 
operating  operations, line faults, or loss of excitation. 

 
 
           



 Steady state limit is the maximum power that 

can be transferred without the system become  
unstable when the load in increased gradually 
under steady state conditions. 

 

Transient limit is the maximum power that can be 
transferred without the system becoming 
unstable when a sudden or large disturbance 
occurs. 



Swing Equation for Single Swing Equation for Single 
Machine Infinite Bus SystemMachine Infinite Bus System  

 The equation governing the motion of the rotor of a 
synchronous machine  

    

 

 

   where 

       J=The total moment of inertia of the rotor(kg-m2) 

          =Singular displacement of the rotor 

      Tm=Mechanical torque (N-m) 

      Te=Net electrical torque (N-m) 

      Ta=Net accelerating torque (N-m) 
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 Where pm is the shaft power input to the machine 

                 pe is the electrical power  

                 pa is the accelerating power 
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 δ and ωs are in electrical 

radian 

p.u 

p.u 

H=machine inertia constant 



Swing Equation for Swing Equation for MultimachineMultimachine  
SystemSystem  
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Rotor Angle StabilityRotor Angle Stability  

 It is the ability of interconnected synchronous  

machines of a power system to maintain in 

synchronism. The stability problem involves the study 

of the electro mechanical oscillations inherent  in 

power system. 

 

 Types of Rotor Angle Stability 

      1. Small Signal Stability (or) Steady State Stability 

      2. Transient stability 



Voltage StabilityVoltage Stability  

 It is the ability of a power system to maintain 
steady acceptable voltages at all buses in the 
system under normal operating conditions and 
after being subjected to a disturbance. 

 

 

The major factor for instability is the  inability of 
the power system to meet the demand for 
reactive power. 

 



 Mid Term Stability 

  It represents transition between short term and 
long 

   term responses. 

  Typical ranges of time periods. 

               1. Short term  : 0 to 10s 

               2. Mid Term    : 10 to few minutes 

            3. Long Term : a few minutes to 10’s of 
minutes 

 

 Long Term Stability 

  Usually these problem be associated with 

             1. Inadequacies in equipment responses. 

             2. Poor co-ordination of control and 
protection equipment. 

             3. Insufficient active/reactive power 
reserves. 

 



Equal Area CriterionEqual Area Criterion  

 This is a simple graphical method to predict the 
transient stability of two machine system or a 
single machine against infinite bus. This criterion 
does not require swing equation or solution of 
swing equation to determine the stability 
condition. 

 

 The stability conditions are determined by 
equating the areas of segments on power angle 
diagram. 



Power-angle curve for equal area criterion 

multiplying swing equation by           on both sides 

Multiplying both sides of the above equation by dt and then integrating between two 

arbitrary angles δ0 and δc 



Once a fault occurs, the machine starts accelerating. Once the fault is 

cleared, the machine keeps on accelerating before it reaches its peak 

at δc ,  

The area of accelerating A1  

The area of deceleration is given by A2 

If the two areas are equal, i.e., A1 = A2, then the power system will be stable  



Critical Clearing Angle (δcr) maximum allowable 

value of the clearing time and angle for the system 

to remain stable are known as critical clearing time 

and angle. 

 

δcr  expression  can be obtained by substituting δc = 

δcr  in the equation A1 = A2 

Substituting Pe = 0 in swing equation  

 

   

  



Replacing δ by δcr and t by tcr in the above equation, we get 

the critical clearing time as  

Integrating the above equation  



Factors Affecting Transient Factors Affecting Transient 
StabilityStability  

 Strength of the transmission network within the 
system and of the tie lines to adjacent systems. 

 

 The characteristics of generating units including 
inertia of rotating parts and electrical properties 
such as transient reactance and magnetic 
saturation characteristics of the stator and 
rotor. 

 

 Speed with which the faulted lines or 
equipments can be disconnected. 

 



Numerical Integration methods   Numerical Integration methods     

Modified Euler’s method 

 

 Runge-Kutta method 

 



MODIFIED EULER’S METHODMODIFIED EULER’S METHOD  

 Using first derivative of the initial point  next 
point is obtained 

                                     the step 

 

 Using this x1
p dx/dt at x1

p=f(t1,
 x1

p) 

 Corrected value is 
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Numerical Solution of the swing Numerical Solution of the swing 

equationequation    

 Input power pm=constant 

 At steady state pe=pm, 

 

 

 

 

 At synchronous speed 
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The swing equation 

Applying Modified Eulers method to above equation 
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 The derivatives at the end of interval 
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 Obtain a load flow solution for pretransient conditions 

 Calculate the generator internal voltages behind transient reactance. 

 Assume the occurrence of a fault and calculate the reduced admittance 
matrix 

 Initialize time count K=0,J=0 

 Determine the eight constants 
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RungeRunge--Kutta MethodKutta Method  



Compute the change in state vector 
 
 
 
 
Evaluate the new state vector 
 
 
 
Evaluate the internal voltage behind transient reactance using the 
relation 
 
 
 
Check if t<tc yes K=K+1 
Check if j=0,yes modify the network data and obtain the new reduced 
      admittance matrix and set j=j+1 
 set K=K+1 
Check if K<Kmax, yes start from finding 8 constants 
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UnitUnit--VV  

Traveling Wave 



IntroductionIntroduction  

 Transient Phenomenon :  

◦ Aperiodic function of time 

◦ Short duration 

 

 Example :Voltage & Current Surge : 
(The current surge are made up of charging or discharging 
capacitive currents that introduced by the change in voltages 
across  the shunt capacitances of the transmission system) 

◦ Lightning Surge 

◦ Switching Surge 

 



Impulse Voltage WaveformImpulse Voltage Waveform  



Traveling WaveTraveling Wave  
 Disturbance represented by 

closing or opening the switch 
S. 

 If Switch S closed, the line 
suddenly connected to the 
source. 

 The whole line is not 
energized instantaneously. 

 Processed : 

◦ When Switch S closed 

◦ The first capacitor becomes 
charged immediately 

◦ Because of the first series 
inductor (acts as open circuit), 
the second capacitor is delayed 

 This gradual buildup of voltage 
over the line conductor can be 
regarded as a voltage wave is 
traveling from one end to the 
other end 



Voltage & Current FunctionVoltage & Current Function  

 vf=v1(x-t)  

 vb=v2(x+t)  

  = 1/(LC) 

 v(x,t)=vf  + vb 

 vf=Zcif 

 vb=Zcib 

 

 Zc=(L/C)½  

 If=vf/Zc 

 Ib=vb/Zc 

 I(x,t)=If + Ib 

 I(x,t)=(C/L) ½  
[v1(x-t) -v2(x+t)] 

 



Velocity of Surge PropagationVelocity of Surge Propagation  

 In the air = 300 000 km/s 

  = 1/(LC) m/s 

 Inductance single conductor Overhead Line 
(assuming zero ground resistivity) : 
L=2 x 10-7 ln (2h/r)         H/m 
C=1/[18 x 109 ln(2h/r)]   F/m 
 

  
  

 In the cable :  = 1/(LC) = 3 x 108 K    m/s 
K=dielectric constant (2.5 to 4.0) 
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Surge Power Input & Energy StorageSurge Power Input & Energy Storage  

 P=vi     Watt 

 

 Ws= ½ Cv2      ; Wm= ½ Li2  

 

 W=Ws+Wm = 2 Ws = 2 Wm = Cv2 = Li2  

 

 P=W  = Li2 /(LC) = i2 Zc = v2 / Zc 

 



Superposition of Forward and Superposition of Forward and 
BackwardBackward--Traveling WaveTraveling Wave  



Effects of Line TerminationEffects of Line Termination  

 Assuming vf, if,vb and ib are the 
instantaneous voltage and current.  
Hence the instantaneous voltage and current 
at the point discontinuity are : 
 

 v(x,t)=vf  + vb   and   I(x,t)=If + Ib 

 I=vf/Zc - vb/Zc   and   iZc=vf – vb 

 v + iZc= 2vf     so     v=2vf=iZc 

 vf = ½ (v+iZc) and   vb = ½ (v+iZc) or 
                               vb= vf-iZc 

 
 
 



Line Termination in ResistanceLine Termination in Resistance  
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Line Termination in Impedance (Z)Line Termination in Impedance (Z)  
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 Line is terminated with its characteristic 
impedance : 
◦ Z=Zc  

◦  =0, no reflection (infinitely long) 

 Z>Zc 

◦ vb is positive 

◦ Ib is negative 

◦ Reflected surges increased voltage and reduced current 

 Z<Zc 

◦ vb is negative 

◦ Ib is positive 

◦ Reflected surges reduced voltage and increased current 

 Zs and ZR are defined as the sending-end and 
receiving end. 
 

   
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OpenOpen--Circuit Line TerminationCircuit Line Termination  

 Boundary condition for current i=0 

 Therefore if=-ib 

 

 Vb=Zcib=Zif=vf 

 

 Thus total voltage at the receiving end 
v=vf+vb=2vf 

 

 Voltage at the open end is twice the forward 
voltage wave 



Short Circuit Line TerminationShort Circuit Line Termination  

 Boundary condition for current v=0 

 Therefore vf=-vb 

 If=vf/Zc=-(vb/Zc)=ib 

 Thus total voltage at the receiving end 
v=if+ib=2if 

 Current at the open end is twice the forward 
current wave 

 





Termination Through CapacitorTermination Through Capacitor  
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Termination Through InductorTermination Through Inductor  
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Junction of Two LineJunction of Two Line  
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