EEE-601
 POWER SYSTEM ANALYSIS
 Unit-1

Per Unit

per unit=actual value/base value
Let KVA ${ }_{b}=$ Base KVA
$k V_{b}=$ Base voltage
$Z_{b}=$ Base impedance in Ω

$$
Z_{b}=\frac{\left(k V_{b}\right)^{2}}{M V A_{b}}=\frac{\left(k V_{b}\right)^{2}}{\frac{K V A_{b}}{1000}}
$$

Changing the base of per unit quantities

Let $z=$ actual impedance (Ω)
$Z_{b}=$ base impedance (Ω)

$$
Z_{p . u}=\frac{Z}{Z_{b}}=\frac{Z}{\frac{\left(k V_{b}\right)^{2}}{M V A_{b}}}=\frac{Z * M V A_{b}}{\left(k V_{b}\right)^{2}}
$$

Let $\quad k V_{b, o l d} \& M V B_{b, \text { old }}$ represent old base values $k V_{b, \text { new }} \& M V B_{b, \text { new }}$ represent new base values

$$
\begin{aligned}
& Z_{\text {p..,old }}=\frac{Z^{*} M V A_{b, \text { old }}}{\left(k V_{b, \text { old }}\right)^{2}} \rightarrow(1) \\
& Z=\frac{Z_{p, \text {.,old }} * M V A_{b, o l d}}{\left(k V_{b, \text { old }}\right)^{2}} \rightarrow(2) \\
& Z_{p, u, n \text { new }}=\frac{Z^{*} M V A_{b, \text { new }}}{\left(k V_{b, \text { new }}\right)^{2}} \rightarrow(3) \\
& Z_{p, \text { p,new }}=Z_{p, u, o l d} * \frac{\left(k V_{b, o l d}\right)^{2}}{\left(k V_{b, \text { nee }}\right)^{2}} * \frac{M V A_{b, \text { new }}}{M V A_{b, o l d}}
\end{aligned}
$$

ADVANTAGES OF PER UNIT CALCULATIONS

* The p.u impedance referred to either side of a 1Ф transformer is same
* The manufacturers provide the impedance value in p.u
* The p.u impedance referred to either side of a 3D transformer is same regardless of the 3Φ connections $Y-Y, \Delta-Y$
p.u value always less than unity.

IMPEDANCE DIAGRAM

- This diagram obtained by replacing each component by their 1Ф equivalent circuit.

Following approximations are made to draw impedance diagram

1. The impedance b/w neutral and ground omitted.
2. Shunt branches of the transformer equivalent circuit neglected.

REACTANCE DIAGRAM

* It is the equivalent circuit of the power system in which the various components are represented by their respective equivalent circuit.
* Reactance diagram can be obtained after omitting all resistances \& capacitances of the transmission line from impedance diagram.

REACTANCE DIAGRAM FOR THE GIVEN POWER SYSTEM NETWORK

PROCEDURE TO FORM REACTANCE DIAGRAM FROM SINGIE DIAGRAM

1.Select a base power kVA_{b} or MVA_{b}
2. Select a base voltage kV_{b}
3. The voltage conversion is achieved by means of transformer kV_{b} on LT section $=\mathrm{kV}_{\mathrm{b}}$ on HT section $\times \mathrm{LT}$ voltage rating/ HT voltage rating
4. When specified reactance of a component is in ohms p.u reactance=actual reactance/base reactance

$$
X_{p . u, \text { new }}=X_{p . u, o l d} * \frac{\left(k V_{b, \text { old }}\right)^{2}}{\left(k V_{b, \text { new }}\right)^{2}} * \frac{M V A_{b, \text { new }}}{M V A_{b, \text { old }}}
$$

Thank you

