EEE- 601 POWER SYSTEM ANALYSIS Unit-1

Per Unit

per unit=actual value/base value

Let KVA_b=Base KVA

kV_b=Base voltage

 Z_b =Base impedance in Ω

$$Z_{b} = \frac{\left(kV_{b}\right)^{2}}{MVA_{b}} = \frac{\left(kV_{b}\right)^{2}}{\frac{KVA_{b}}{1000}}$$

Changing the base of per unit quantities

Let $z = actual impedance(\Omega)$ $Z_b = base impedance(\Omega)$

$$Z_{p.u} = \frac{Z}{Z_b} = \frac{Z}{(kV_b)^2} = \frac{Z * MVA_b}{(kV_b)^2}$$
Let $kV_{b,old} \& MVB_{b,old}$ represent old base values $kV_{b,new} \& MVB_{b,new}$ represent new base values

ADVANTAGES OF PER UNIT CALCULATIONS

- The p.u impedance referred to either side of a 10 transformer is same
- The manufacturers provide the impedance value in p.u
- The p.u impedance referred to either side of a 3Φ transformer is same regardless of the 3Φ connections Y-Y,Δ-Y
- p.u value always less than unity.

IMPEDANCE DIAGRAM

- This diagram obtained by replacing each component by their 1Φ equivalent circuit.
 - Following approximations are made to draw impedance diagram
 - 1. The impedance b/w neutral and ground omitted.
 - 2. Shunt branches of the transformer equivalent circuit neglected.

REACTANCE DIAGRAM

- It is the equivalent circuit of the power system in which the various components are represented by their respective equivalent circuit.
- Reactance diagram can be obtained after omitting all resistances & capacitances of the transmission line from impedance diagram.

REACTANCE DIAGRAM FOR THE GIVEN POWER SYSTEM NETWORK

PROCEDURE TO FORM REACTANCE DIAGRAM FROM SINGLE DIAGRAM

- 1.Select a base power kVA_b or MVA_b
- 2.Select a base voltage kV_b
- 3. The voltage conversion is achieved by means of transformer kV_b on LT section= kV_b on HT section x LT voltage rating/HT voltage rating
- 4. When specified reactance of a component is in ohms p.u reactance=actual reactance/base reactance

$$X_{p.u,new} = X_{p.u,old} * \frac{\left(kV_{b,old}\right)^2}{\left(kV_{b,new}\right)^2} * \frac{MVA_{b,new}}{MVA_{b,old}}$$

