
EEE- 601 POWER SYSTEM ANALYSIS Unit-2

Single Line-to-Ground (SLG) Faults

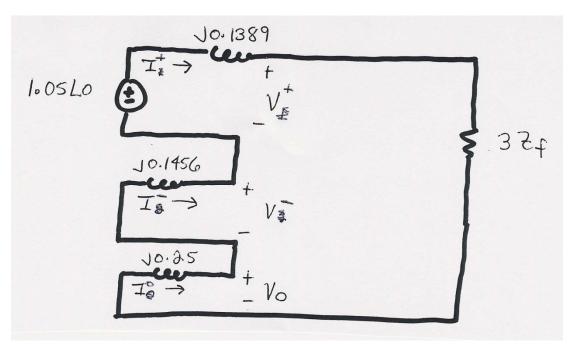
- Unbalanced faults unbalance the network, but only at the fault location. This causes a coupling of the sequence networks. How the sequence networks are coupled depends upon the fault type. We'll derive these relationships for several common faults.
- With a SLG fault only one phase has non-zero fault current -- we'll assume it is phase A.

SLG Faults, cont'd

$$\begin{bmatrix} I_a^f \\ I_b^f \\ I_c^f \end{bmatrix} = \begin{bmatrix} ? \\ 0 \\ 0 \end{bmatrix}$$

Then since

$$\begin{bmatrix} I_f^0 \\ I_f^+ \\ I_f^- \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 \\ 1 & \alpha^2 & \alpha \end{bmatrix} \begin{bmatrix} ? \\ 0 \\ 0 \end{bmatrix} \rightarrow I_f^0 = I_f^+ = I_f^- = \frac{1}{3} I_a^f$$

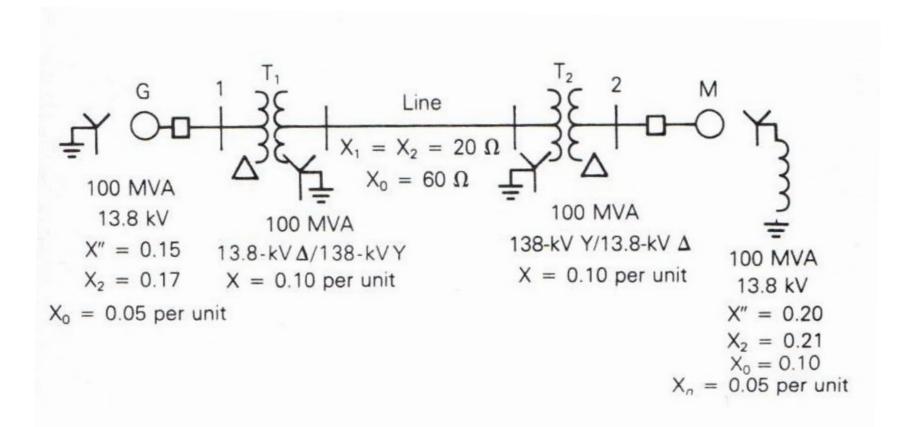

SLG Faults, cont'd

$$\begin{bmatrix} V_a^f \\ V_a^f \\ V_b^f \\ V_c^f \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \alpha^2 & \alpha \\ 1 & \alpha & \alpha^2 \end{bmatrix} \begin{bmatrix} V_f^0 \\ V_f^+ \\ V_f^- \end{bmatrix}$$

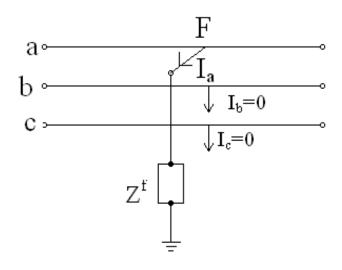
This means
$$V_a^f = V_f^0 + V_f^+ + V_f^-$$

The only way these two constraints can be satisified is by coupling the sequence networks in series

SLG Faults, cont'd



With the sequence networks in series we can solve for the fault currents (assume Z_f=0)


$$I_f^+ = \frac{1.05 \angle 0^{\circ}}{j(0.1389 + 0.1456 + 0.25 + 3Z_f)} = -j1.964 = I_f^- = I_f^0$$

$$\mathbf{I} = \mathbf{A} \mathbf{I}_s \rightarrow I_a^f = -j5.8 \text{ (of course, } I_b^f = I_c^f = 0)$$

Example 9.3

SINGLE LINE TO GROUND FAULT

Consider a fault between phase a and ground through an impedance z_f

$$I_{b} = 0$$

$$I_{c} = 0$$

$$V_{a} = Z^{f}I_{a}$$

$$I_{a1} = I_{a2} = I_{a0} = I_{a}/3$$

$$I_{a1} = \frac{E_{a}}{Z_{1} + Z_{2} + Z_{0} + 3Z^{f}}$$

Thank you