EEE-601
 POWER SYSTEM ANALYSIS
 Unit-2

ALGORITHM FOR FORMATION OF THE BUS IMPEDANCE MATRIX

- Modification of Zbus matrix involves any one of the following 4 cases

Case 1:adding a branch impedance z_{b} from a new bus p to the reference bus
Addition of new bus will increase the order the $Z_{\text {bus }}$ matrix by 1

$$
Z_{\text {bus,new }}=\left(\begin{array}{cc}
Z_{\text {original }} & 0 \\
0 & Z_{b}
\end{array}\right)
$$

($n+1$)th column and row elements are zero except the diagonal diagonal element is z_{b}

Case 2: adding a branch impedance z_{b} from a new bus p to the existing bus q

Addition of new bus will increase the order the $Z_{\text {bus }}$ matrix by 1

The elements of $(n+1)$ th column and row are the elements of q th column and row and the diagonal element is $Z_{q q}+Z_{b}$

Case 3:adding a branch impedance z_{b} from an existing bus p to the reference bus

The elements of $(n+1)$ th column and row are the elements of qth column and row and the diagonal element is $Z_{q q}+Z_{b}$ and ($n+1$)th row and column should be eliminated using the following formula

$$
Z_{j k, a c t}=Z_{j k}-\frac{Z_{j(n+1)} Z_{(n+1) k}}{Z_{(n+1)(n+1)}} j=1,2 \ldots n ; k=1,2 . . n
$$

Case 4:adding a branch impedance z_{b} between existing buses h and q elements of ($n+1$)th column are elements of bus h column -
bus q column and elements of $(n+1)$ th row are elements of bus h row - bus q row the diagonal element=

$$
Z_{b}+Z_{h h}+Z_{q q}-2 Z_{h q}
$$

and ($n+1$)th row and column should be eliminated using the following formula

$$
Z_{j k, a c t}=Z_{j k}-\frac{Z_{j(n+1)} Z_{(n+1) k}}{Z_{(n+1)(n+1)}} j=1,2 \ldots n ; k=1,2 . . n
$$

ALGORITHM FOR SHORT CIRCUIT ANALYSIS USING BUS IMPEDANCE MATRIX

- Consider a n bus network. Assume that three phase fault is applied at bus k through a fault impedance z_{f}
- Prefault voltages at all the buses are

$$
V_{\text {bus }}(0)=\left[\begin{array}{l}
V_{1}(0) \\
V_{2}(0) \\
V_{k}(0) \\
\cdot \\
V_{n}(0)
\end{array}\right]
$$

Draw the Thevenin equivalent circuit i.e Zeroing all voltage sources and add voltage source $\quad V_{k}(0)$ at faulted bus k and draw the reactance diagram

- The change in bus voltage due to fault is

$$
\Delta V_{b u s}=\left[\begin{array}{l}
\Delta V_{1} \\
\cdot \\
\Delta V_{k} \\
\cdot \\
\Delta V_{n}
\end{array}\right]
$$

- The bus voltages during the fault is

$$
V_{b u s}(F)=V_{b u s}(0)+\Delta V_{b u s}
$$

- The current entering into all the buses is zero.the current entering into faulted bus k is -ve of the current leaving the bus k

$$
\begin{aligned}
& \Delta V_{b u s}=Z_{b u s} I_{b u s} \\
& \Delta V_{b u s}=\left(\begin{array}{cccc}
S_{11} & \cdot & Z_{1 k} & \cdot \\
\cdot & Z_{1 n} \\
\cdot & \cdot & \cdot & \cdot \\
Z_{k 1} & \cdot & Z_{k k} & \cdot \\
\cdot & Z_{k n} \\
\cdot & \cdot & \cdot & \cdot \\
Z_{n 1} & \cdot & Z_{n k} & \cdot \\
Z_{n n}
\end{array}\right)\left[\begin{array}{l}
0 \\
\cdot \\
0
\end{array}\right] \\
& V_{k}(F)=V_{k}(0)-Z_{k k} I_{k}(F) \\
& V_{k}(F)=Z_{f} I_{k}(F) \\
& I_{k}(F)=\frac{V_{k}(0)}{Z_{k k}+Z_{f}} \\
& V_{i}(F)=V_{i}(0)-Z_{i k} I_{k}(F)
\end{aligned}
$$

Thank you

