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Newton-Raphson Algorithm 

The second major power flow solution 
method is the Newton-Raphson algorithm 

Key idea behind Newton-Raphson is to use 
sequential linearization 

General form of problem: Find an x such that
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Newton-Raphson Method (scalar) 
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Newton-Raphson Method, cont’d 
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Newton-Raphson Example 
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Newton-Raphson Example, cont’d 
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Guess x 1.  Iteratively solving we get

v ( )

0 1 1 0.5

1 1.5 0.25 0.08333

2 1.41667 6.953 10 2.454 10

3 1.41422 6.024 10

v v v

v

v v v

x x x
x

x f x x



 



 
 

  









  





Sequential Linear Approximations 

Function is f(x) = x2 - 2 = 0. 
Solutions are points where 
f(x) intersects f(x) = 0 axis 

At each  
iteration the 
N-R method 
uses a linear 
approximation 
to determine  
the next value 
for x 



Newton-Raphson Comments 

When close to the solution the error decreases 
quite quickly -- method has quadratic 
convergence 

 f(x(v)) is known as the mismatch, which we would 
like to drive to zero 

 Stopping criteria is when f(x(v))  <  
Results are dependent upon the initial guess.  

What if we had guessed x(0) = 0, or x (0) = -1? 
A solution’s region of attraction (ROA) is the set 

of initial guesses that converge to the particular 
solution.  The ROA is often hard to determine 
 



Multi-Variable Newton-Raphson 
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Next we generalize to the case where  is an n-

dimension vector, and ( ) is an n-dimension function
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Multi-Variable Case, cont’d 
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Multi-Variable Case, cont’d 

1 1 1

1 2
1 1

2 2 2
2 2

1 2

1 2

This can be written more compactly in matrix form
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Jacobian Matrix 
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The n by n matrix of partial derivatives is known

as the Jacobian matrix, ( )
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Thank You 


