UNIT IV

STABILITY ANALYSIS

Frequency Response for Gen. Loss

- In response to rapid loss of generation, in the initial seconds the system frequency will decrease as energy stored in the rotating masses is transformed into electric energy
 - Solar PV has no inertia, and for most new wind turbines the inertia is not seen by the system
- Within seconds governors respond, increasing power output of controllable generation
 - Solar PV and wind are usually operated at maximum power so they have no reserves to contribute

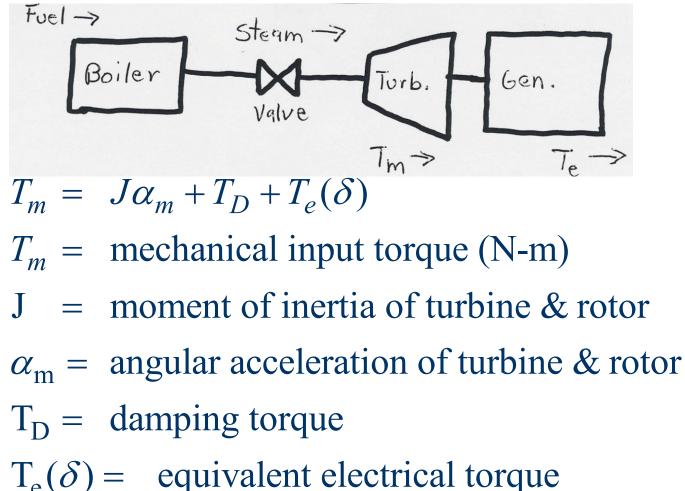
Generator Electrical Model

 The simplest generator model, known as the classical model, treats the generator as a voltage source behind the direct-axis transient reactance; the voltage magnitude is fixed, but its angle changes according to the mechanical dynamics

$$\mathbf{E_a LS} \bigoplus \mathbf{P_e(S)} \rightarrow \mathbf{V_T LO} \quad P_e(\delta) = \frac{|V_T||E_a|}{X_d'} \sin \delta$$

Generator Mechanical Model

Generator Mechanical Block Diagram



Generator Mechanical Model, cont'd

In general power = torque \times angular speed Hence when a generator is spinning at speed ω_s

$$T_{m} = J\alpha_{m} + T_{D} + T_{e}(\delta)$$

$$T_{m} \omega_{s} = (J\alpha_{m} + T_{D} + T_{e}(\delta)) \omega_{s} \square$$

$$P_{m} = J\alpha_{m}\omega_{s} + T_{D}\omega_{s} + P_{e}(\delta)$$
Initially we'll assume no damping (i.e., $T_{D} = 0$)
Then

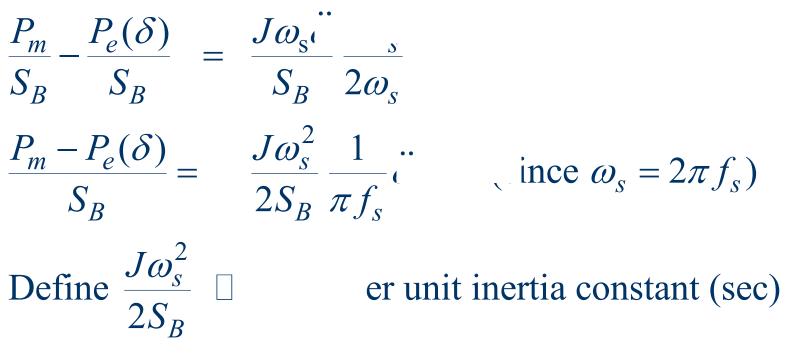
$$P_m - P_e(\delta) = J\alpha_m\omega_s$$

 P_m is the mechanical power input, which is assumed to be constant throughout the study time period

Generator Mechanical Model, cont'd

 $P_m - P_{\rho}(\delta) = J\alpha_m \omega_s$ $\theta_m = \omega_s t + \delta = \text{rotor angle}$ $\omega_m = \frac{d\theta_m}{dt} = \dot{t}_m \qquad .$ $\alpha_m = \dot{\iota}$ $P_m - P_{\rho}(\delta) = J\omega_{\rm s}\alpha_m = J\omega_{\rm s}$ $J\omega_{\rm s}$ = inertia of machine at synchronous speed Convert to per unit by dividing by MVA rating, S_{R} , $\frac{P_m}{S_R} - \frac{P_e(\delta)}{S_R} = \frac{J\omega_{s^c}}{S_R} \frac{--s}{2\omega_{s^c}}$

Generator Mechanical Model, cont'd



All values are now converted to per unit

 $P_m - P_e(\delta) = \frac{H}{\pi f_s}$. Define $M = \frac{H}{\pi f_s}$ Then $P_m - P_e(\delta) = M$.

Generator Swing Equation

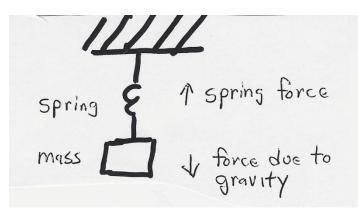
This equation is known as the generator swing equation

$$P_m - P_e(\delta) = M$$

Adding damping we get

$$P_m - P_e(\delta) = M\ddot{e}$$

This equation is analogous to a mass suspended by a spring



kx - gM = M.

Single Machine Infinite Bus (SMIB)

 To understand the transient stability problem we'll first consider the case of a single machine (generator) connected to a power system bus with a fixed voltage magnitude and angle (known as an infinite bus) through a transmission line with impedance jX₁



SMIB, cont'd

Infinite Bus Pelec Eals 1.0L0

$$P_e(\delta) = \frac{E_a}{X'_d + X_L} \sin \delta$$

M, M, M, $-\frac{E_a}{X_d' + X_L}\sin\delta$

SMIB Equilibrium Points

Equilibrium points are determined by setting the right-hand side to zero

$$M_{L}^{"} = \frac{E_{a}}{X_{d}^{'} + X_{L}} \sin \delta$$

$$P_{M} = \frac{E_{a}}{X_{d}^{'} + X_{L}} \sin \delta = 0$$

$$P_{M} = \frac{E_{a}}{X_{d}^{'} + X_{L}} \sin \delta = 0$$
Define $X_{th} = X_{d}^{'} + X_{L}$

$$\delta = \sin^{-1} \left(\frac{P_{M} X_{th}}{E_{a}}\right)$$

Swing Equation for Single Machine Infinite Bus System

• The equation governing the motion of the rotor of a synchronous machine

$$J\frac{d^2\theta_m}{dt^2} = T_a = T_m - T_e$$

where

J=The total moment of inertia of the rotor(kg-m²)

 θ_m =Singular displacement of the rotor

T_m=Mechanical torque (N-m)

T_e=Net electrical torque (N-m)

T_a=Net accelerating torque (N-m)

$$\theta_{m} = \omega_{sm}t + \delta_{m}$$

$$\frac{d\theta_{m}}{dt} = \omega_{sm} + \frac{d\delta_{m}}{dt}$$

$$\frac{d^{2}\theta_{m}}{dt^{2}} = \frac{d^{2}\delta_{m}}{dt^{2}}$$

$$J\omega_{m} \frac{d^{2}\delta_{m}}{dt^{2}} = p_{a} = p_{m} - p_{e}$$

• Where p_m is the shaft power input to the machine p_e is the electrical power p_a is the accelerating power

$$J\omega_{m} = M$$

$$M \frac{d^{2}\delta_{m}}{dt^{2}} = p_{a} = p_{m} - p_{e}$$

$$M = \frac{2H}{\omega_{sm}} S_{machine}$$

$$\frac{2H}{\omega_{sm}} \frac{d^{2}\delta_{m}}{dt^{2}} = \frac{p_{a}}{S_{machine}} = \frac{p_{m} - p_{e}}{S_{machine}}$$

$$H=\text{machine inertial constant}$$

$$\frac{2H}{\omega_{s}} \frac{d^{2}\delta}{dt^{2}} = p_{a} = p_{m} - p_{e}$$

$$\omega_{s} = 2\pi f$$

$$\frac{H}{\pi f_{0}} \frac{d^{2}\delta}{dt^{2}} = p_{a} = (p_{m}) - p_{e}$$

$$\frac{\delta \text{ and } \omega_{s} \text{ are in electrical radiant}}{\frac{d^{2}\delta}{dt^{2}}} = \frac{\pi f_{0}}{H} (p_{m} - p_{2\max} \sin \delta) = \frac{\pi f_{0}}{H} p_{a} \text{ p.u}$$

$$\frac{d\delta}{dt} = \Delta \omega$$

$$\frac{d\Delta\omega}{dt} = \frac{\pi f_{0}}{H} p_{a} = \frac{d^{2}\delta}{dt^{2}} \text{ p.u}$$

 δ and ω_s are in

electrical radian

Swing Equation for Multimachine System

 $S_{machine}$ =machine rating(base) S_{system} =system base $\frac{H_{system}}{\pi f} \frac{d^2 \delta}{dt^2} = p_a = p_m - p_e \quad \text{p.u}$ $H_{system} = H_{machine} \frac{S_{machine}}{S_{system}}$

