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Transient Stability Solution Methods 

 There are two methods for solving the 
transient stability problem 

1. Numerical integration 
 this is by far the most common technique, 

particularly for large systems; during the fault and 
after the fault the power system differential 
equations are solved using numerical methods 

2. Direct or energy methods; for a two bus 
system this method is known as the equal 
area criteria 
 mostly used to provide an intuitive insight into the 

transient stability problem 

 



Numerical Integration of DEs 
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Assume we have a problem of the form

( ) with (t )

This is known as an initial value problem since the 

initial value of  is given at some value of time, t .

We then need to determine (t) for futu

 x f x x x

x

x re time.

Except for special cases, such as linear systems, no

analytic solution is possible.  We must use numerical

technqiues.



Examples 
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Example 1:  Exponential Decay

A simple example with an analytic solution is

x with x(0)  x

This has a solution x(t)  x

Example 2: Mass-Spring Syste
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Euler’s Method 

The simplest technique for numerically integrating

these equations is known as Euler's method.  Key idea

d
is to approximate ( ( ))  as 

dt t

Then

( ) ( ) ( ( ))

In general the smaller the ti
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Euler’s Method Algorithm 
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end

Set t = t  (usually 0)

(t ) =

Pick the time step t, which is problem specific

While t  t  Do

( ) ( ) ( ( ))

End While
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Euler’s Method Example 1 
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Consider the Exponential Decay Example

x with x(0)  x

This has a solution x(t)  x

Since we know the solution we can compare the accuracy

of Euler's method for different time steps
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Euler’s Method Example 1, cont’d 

t  xactual(t) x(t)  t=0.1 x(t)  t=0.05 

0 10 10 10 

0.1 9.048 9 9.02 

0.2 8.187 8.10 8.15 

0.3 7.408 7.29 7.35 

… … … … 

1.0 3.678 3.49 3.58 

… … … … 

2.0 1.353 1.22 1.29 



Euler’s Method Example 2 
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Consider the equations describing the horizontal 

position of a cart attached to a lossless spring:

x

Assuming initial conditions of (0) 1 and x (0) 0,

the analytic solution is x ( ) cos .

We
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 can again compare the results of the analytic and

numerical solutions



Euler's Method Example 2, cont'd 

1 1 2

2 2 1

Starting from the initial conditions at t =0 we next

calculate the value of x(t) at time t = 0.25.

(0.25) (0) 0.25 (0) 1.0

(0.25) (0) 0.25 (0) 0.25

Then we continue on to the next time step, t 

x x x
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1 1 2

2 2 1

= 0.50

(0.50) (0.25) 0.25 (0.25)

1.0 0.25 ( 0.25) 0.9375

(0.50) (0.25) 0.25 (0.25)

0.25 0.25 (1.0) 0.50

x x x

x x x

  

    

  

     



Euler's Method Example 2, cont'd 

t  x1
actual(t) x1(t)  t=0.25 

0 1 1 

0.25 0.9689 1 

0.50 0.8776 0.9375 

0.75 0.7317 0.8125 

1.00 0.5403 0.6289 

… … … 

10.0 -0.8391 -3.129 

100.0 0.8623 -151,983 



Euler's Method Example 2, cont'd 

t x1(10) 

actual -0.8391 

0.25 -3.129 

0.10 -1.4088 

0.01 -0.8823 

0.001 -0.8423 

Below is a comparison of the solution values for x1(t) 

at time t = 10 seconds 



Thank you Thank you 


