UNIT IV

STABILITY ANALYSIS

Transient Stability Solution Methods

- There are two methods for solving the transient stability problem
- 1. Numerical integration
 - this is by far the most common technique, particularly for large systems; during the fault and after the fault the power system differential equations are solved using numerical methods
- 2. Direct or energy methods; for a two bus system this method is known as the equal area criteria
 - mostly used to provide an intuitive insight into the transient stability problem

Numerical Integration of DEs

Assume we have a problem of the form

) with $\mathbf{x}(t_0) = \mathbf{x}_0$

This is known as an initial value problem since the initial value of **x** is given at some value of time, t_0 . We then need to determine **x**(t) for future time.

Except for special cases, such as linear systems, no analytic solution is possible. We must use numerical technqiues.

Examples

Example 1: Exponential Decay A simple example with an analytic solution is \therefore with $x(0) = x_0$

This has a solution $x(t) = x_0 e^{-t}$ Example 2: Mass-Spring System

kx - gM = M...

 $\int_{-\infty}^{1} \left[k x_1 - g M - D x_2 \right]$

or

Euler's Method

The simplest technique for numerically integrating these equations is known as Euler's method. Key idea

is to approximate : (i) =
$$\frac{d\mathbf{x}}{dt}$$
 as $\frac{\Delta \mathbf{x}}{\Delta t}$

Then

 $\mathbf{x}(t + \Delta t) \approx \mathbf{x}(t) + \Delta t \mathbf{f}(\mathbf{x}(t))$

In general the smaller the time step, Δt , the better the approximation.

Euler's Method Algorithm

Set $t = t_0$ (usually 0)

$$\mathbf{x}(\mathbf{t}_0) = \mathbf{x}_0$$

Pick the time step Δt , which is problem specific

While
$$t \le t^{end}$$
 Do
 $\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \mathbf{f}(\mathbf{x}(t))$
 $t = t + \Delta t$

End While

Euler's Method Example 1

Consider the Exponential Decay Example \therefore with $x(0) = x_0$

This has a solution $x(t) = x_0 e^{-t}$

Since we know the solution we can compare the accuracy of Euler's method for different time steps

Euler's Method Example 1, cont'd

t	x ^{actual} (t)	$x(t) \Delta t=0.1$	$\mathbf{x(t)} \ \Delta t=0.05$
0	10	10	10
0.1	9.048	9	9.02
0.2	8.187	8.10	8.15
0.3	7.408	7.29	7.35
•••	•••	•••	•••
1.0	3.678	3.49	3.58
•••	•••	•••	•••
2.0	1.353	1.22	1.29

Euler's Method Example 2

Consider the equations describing the horizontal position of a cart attached to a lossless spring:

- • _ _ _

Assuming initial conditions of $x_1(0) = 1$ and $x_2(0) = 0$, the analytic solution is $x_1(t) = \cos t$.

We can again compare the results of the analytic and numerical solutions

Euler's Method Example 2, cont'd

- Starting from the initial conditions at t = 0 we next calculate the value of x(t) at time t = 0.25.
 - $x_1(0.25) = x_1(0) + 0.25 x_2(0) = 1.0$ $x_2(0.25) = x_2(0) - 0.25 x_1(0) = -0.25$

Then we continue on to the next time step, t = 0.50

- $x_1(0.50) = x_1(0.25) + 0.25 x_2(0.25) =$
 - $= 1.0 + 0.25 \times (-0.25) = 0.9375$
- $x_2(0.50) = x_2(0.25) 0.25 x_1(0.25) =$
 - $= -0.25 0.25 \times (1.0) = -0.50$

Euler's Method Example 2, cont'd

t	$x_1^{actual}(t)$	$x_1(t) \Delta t = 0.25$
0	1	1
0.25	0.9689	1
0.50	0.8776	0.9375
0.75	0.7317	0.8125
1.00	0.5403	0.6289
•••	•••	•••
10.0	-0.8391	-3.129
100.0	0.8623	-151,983

Euler's Method Example 2, cont'd

Below is a comparison of the solution values for $x_1(t)$ at time t = 10 seconds

Δt	x ₁ (10)
actual	-0.8391
0.25	-3.129
0.10	-1.4088
0.01	-0.8823
0.001	-0.8423

