Special Electrical Machines

Hysteresis Motors

- Stator
 - same as for induction motor
- Rotor

Principle of Operation

Spin the stator poles with the rotor blocked

Rotor poles follow the rotating flux, but lag behind by angle

Spin the stator poles with the rotor blocked

If the rotor is released, it will accelerate to synchronous speed

Hysteresis Power Loss, P_h

$$P_h = k_h f_r B_{\max}^n$$

where

f_r = frequency of flux reversal in the rotor (Hz)

B_{max} = maximum value of flux density in the air gap (T)

 P_h = heat-power loss due to hysteresis (W)

 $k_h = constant$

Mechanical Power developed

$$P_{mech} = P_h \left(\frac{1-s}{s}\right)$$

$$P_h = k_h \cdot f \cdot B_{\max}^n$$

$$f_r = sf_s$$

Mechanical Power Developed (cont)

$$T_{h} = \begin{pmatrix} 5252k_{h}f_{s}B_{\max}^{n} \\ n_{s} \\ \\ n_{s} \\ = \frac{120 \cdot f_{s}}{P} \\ T_{h} = \frac{5252k_{h}B_{\max}^{n}}{\frac{120}{P}} \\ \end{cases}$$

Independent of frequency and speed!

Hysteresis Motor at Synchronous Speed

No load and negligible rotational losses

Induced rotor magnets remain locked with the rotating poles produced by the stator

THANKS....

Queries Please...