Special Electrical Machines

UNIT-V

Single Phase Commutator Motors

 Construction, principle of operation, characteristics of universal and repulsion motors; Linear Induction Motors.

Construction, principle of operation, Linear force, and applications.

Universal Motor

Universal Motor

- Series-connected
 - Rotor and Stator are connected in series
- Operates on <u>either</u> ac or dc
- NEMA ratings
 - 0.01hp 1.0hp @5000r/min or above

The Commutator Bar and Brushes are a switch that reverses the current in the armature coil as it rotates

Check the Direction of Rotation

+Positive Half-Cycle+

Opposite Half-Cycle

Conclusions

 The direction of rotation (and Torque) is independent of the polarity of the AC source!

$$T_D \propto B_p I_a$$

 $B_p \propto I_a$
 $T_D \propto I_a^2$

- T_D = Developed Torque
- **B**_p = flux density due to current in field
- I_a = armature current

Other Considerations

- How do you reverse the direction of rotation?
 - Reverse the direction of the current in *either* the field *or* in the armature, *but not both*!
- How do you control the speed of the motor?
 - Reduce the voltage applied to the motor
 - Use an autotransformer or SCR/Triac
 - This reduces the armature current, reducing the torque, reducing the speed
- Applications
 - Portable power tools
 - Small appliances

THANKS....

Queries Please...