UNIT-3

The Network Layer

Comparison of Virtual-Circuit and Datagram Subnets

Issue	Datagram subnet	Virtual-circuit subnet
Circuit setup	Not needed	Required
Addressing	Each packet contains the full source and destination address	Each packet contains a short VC number
State information	Routers do not hold state information about connections	Each VC requires router table space per connection
Routing	Each packet is routed independently	Route chosen when VC is set up; all packets follow it
Effect of router failures	None, except for packets lost during the crash	All VCs that passed through the failed router are terminated
Quality of service	Difficult	Easy if enough resources can be allocated in advance for each VC
Congestion control	Difficult	Easy if enough resources can be allocated in advance for each VC

Routing Algorithms

- The Optimality Principle
- Shortest Path Routing
- Flooding
- Distance Vector Routing
- Link State Routing
- Hierarchical Routing
- Broadcast Routing
- Multicast Routing
- Routing for Mobile Hosts
- Routing in Ad Hoc Networks

Routing Algorithms (2)

Conflict between fairness and optimality.

The Optimality Principle

(a) A subnet. (b) A sink tree for router B.

Shortest Path Routing

The first 5 steps used in computing the shortest path from A to D. The arrows indicate the working node.

Flooding

- Routing algorithm in which every incoming packet sent out on every outgoing line except the one it arrived on.
- Generate vast no of duplicate packets.
- A hop counter is used to stop the process . If sender not know the hop count ,it can be set to worst.
- Or a sequence no added to check which packet has been flooded.
- Selective flooding—incoming packet sent only in right direction.

Distance Vector Routing

А

А

Н

Н

Н

Κ

Κ

(a) A subnet. (b) Input from A, I, H, K, and the new routing table for J.

А

E

Thank YOU