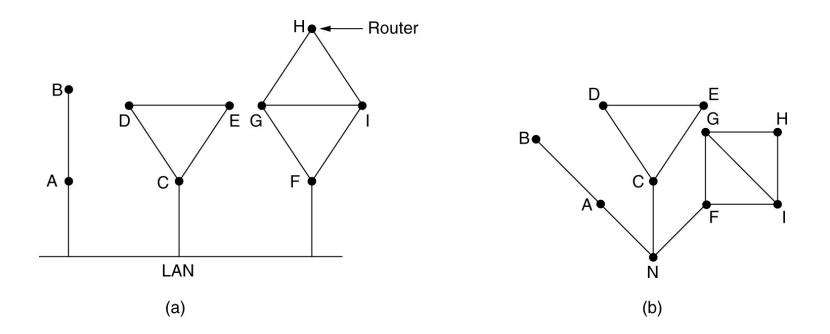

UNIT-3

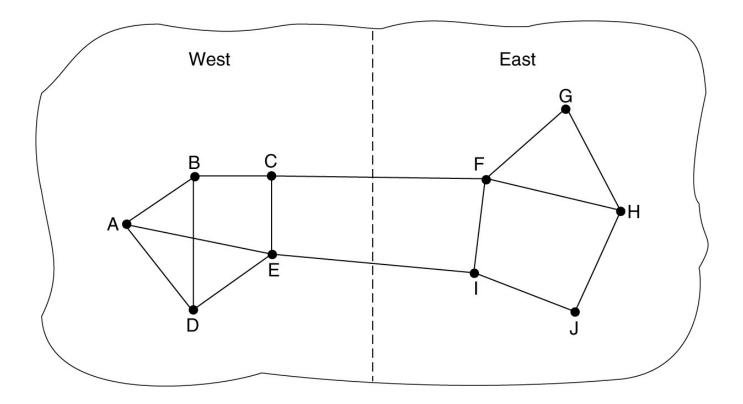
The Network Layer

Distance Vector Routing (2)

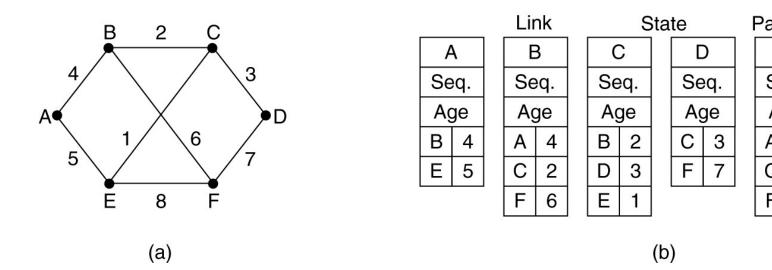

The count-to-infinity problem.

Link State Routing

Each router must do the following:


- 1. Discover its neighbors, learn their network address.
- 2. Measure the delay or cost to each of its neighbors.
- 3. Construct a packet telling all it has just learned.
- 4. Send this packet to all other routers.
- 5. Compute the shortest path to every other router.

Learning about the Neighbors


(a) Nine routers and a LAN. (b) A graph model of (a).

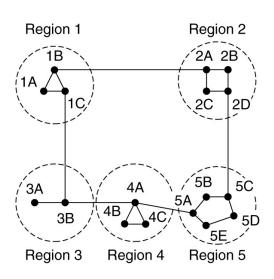
Measuring Line Cost

A subnet in which the East and West parts are connected by two lines.

Building Link State Packets

ackets						
Е			F	-		
Seq.			Se	eq.		
Age			Αç	ge		
4	5		В	6		
С	1		D	7		
F	8		Е	8		
			90 - C			

8


(a) A subnet. (b) The link state packets for this subnet.

Distributing the Link State Packets

			Ser	nd fla	igs	ACK flags		gs	
Source	Seq.	Age	Á	C	F	Á	C	F	Data
А	21	60	0	1	1	1	0	0	
F	21	60	1	1	0	0	0	1	
E	21	59	0	1	0	1	0	1	
С	20	60	1	0	1	0	1	0	
D	21	59	1	0	0	0	1	1	

The packet buffer for router B in the previous slide (Fig. 5-13).

Hierarchical Routing

Full table for 1A						
Dest.	Line	Hops				
1A	-	-				
1B	1B	1				
1C	1C	1				
2A	1B	2				
2B	1B	3				
2C	1B	3				
2D	1B	4				
ЗA	1C	3				
3B	1C	2				
4A	1C	3				
4B	1C	4				
4C	1C	4				
5A	1C	4				
5B	1C	5				
5C	1B	5				
5D	1C	6				
5E 1C		5				
(b)						

Full table for 1A H

Hierarchical table for 1A

Dest. Line Hops 1A _ _ 1B 1B 1 1C 1C 1 1B 2 2 1C 3 2 1C 3 4 1C 5 4

(c)

(a)

Hierarchical routing.