Linear Block Codes

Basic Definitions

- Linearity: If $\mathbf{m}_1 \rightarrow \mathbf{c}_1$ and $\mathbf{m}_2 \rightarrow \mathbf{c}_2$ then $\mathbf{m}_1 \oplus \mathbf{m}_2 \rightarrow \mathbf{c}_1 \oplus \mathbf{c}_2$
 - where m is a k-bit information sequence c is an n-bit codeword. ⊕ is a bit-by-bit mod-2 addition without carry
- <u>Linear code</u>: The sum of any two codewords is a codeword.
- Observation: The all-zero sequence is a codeword in every

linear block code.

Basic Definitions (cont'd)

- <u>Def</u>: The weight of a codeword \mathbf{c}_i , denoted by $w(\mathbf{c}_i)$, is the number of of nonzero elements in the codeword.
- <u>Def</u>: The minimum weight of a code, w_{\min} , is the smallest weight of the nonzero codewords in the code.
- <u>Theorem</u>: In any linear code, $d_{\min} = w_{\min}$

Systematic codes	n-k	k		
	check bits	information bits		

Any linear block code can be put in systematic form

linear Encoder.

By linear transformation

c = m · G = m_og_o + m_ig_o ++ m_{k-i}g_{k-i}
The code C is called a k-dimensional subspace.
G is called a generator matrix of the code.
Here G is a k ×n matrix of rank k of elements from GF(2), g_i is the *i*-th row vector of G.
The rows of G are linearly independent since G is assumed to have rank k.

(7, 4) Hamming code over GF(2) The encoding equation for this code is given by

 $c_{o} = m_{o}$ $c_{1} = m_{1}$ $c_{2} = m_{2}$ $c_{3} = m_{3}$ $c_{4} = m_{o} + m_{1} + m_{2}$ $c_{5} = m_{1} + m_{2} + m_{3}$ $c_{6} = m_{o} + m_{1} + m_{3}$

	[1	0	0	0	1	0	1
~	0	1	0	Ø	1	1	1
6=	0	0	1	0	1	1	0
	0	0	0	1	0	1	1

Linear Systematic Block Code:

An (n, k) linear systematic code is completely specified by a k × n generator matrix of the following form.

$$G = \begin{bmatrix} \overline{g}_{\theta} \\ \overline{g}_{1} \\ \vdots \\ \overline{g}_{k-1} \end{bmatrix} = [I_{k}P]$$

where I_k is the $k \times k$ identity matrix.

Linear Block Codes

- the number of codeworde is 2^k since there are 2^k distinct messages.
- The set of vectors {g_i} are linearly independent since we must have a set of unique codewords.
- linearly independent vectors mean that no vector g_i can be expressed as a linear combination of the other vectors.
- These vectors are called baises vectors of the vector space C.
- The dimension of this vector space is the number of the basis vector which are *k*.
- $G_i \in C \rightarrow$ the rows of G are all legal codewords.

Hamming Weight

the minimum hamming distance of a linear block code is equal to the minimum hamming weight of the nonzero code vectors.

Since each $g_i \in C$, we must have $W_h(g_i) \ge d_{\min}$ this a necessary condition but not sufficient.

Therefore, if the hamming weight of one of the rows of G is less than d_{min} , $\rightarrow d_{min}$ is not correct or G not correct.

Generator Matrix

- All 2^k codewords can be generated from a set of k linearly independent codewords.
- The simplest choice of this set is the *k* codewords corresponding to the information sequences that have a single nonzero element.
- <u>Illustration</u>: The generating set for the (7,4) code:

1000 ===> 1101000

0100 ===> 0110100

0010 ===> 1110010

0001 ===> 1010001

Generator Matrix (cont'd)

• Every codeword is a linear combination of these 4 codewords.

That is: $\mathbf{c} = \mathbf{m}_{\mathbf{G}}$, where

$$\mathbf{G} = \begin{vmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ \vdots \\ k \times (n-k) & \vdots \\ k \times k & k & k & k & k \end{vmatrix} = \begin{bmatrix} \mathbf{P} \mid \mathbf{I}_k \end{bmatrix}$$

• Storage requirement reduced from $2^k(n+k)$ to k(n-k).

Parity-Check Matrix

For $\mathbf{G} = [\mathbf{P} | \mathbf{I}_k]$, define the matrix $\mathbf{H} = [\mathbf{I}_{n-k} | \mathbf{P}^T]$ (The size of \mathbf{H} is $(n-k)\mathbf{x}n$).

It follows that $\mathbf{G}\mathbf{H}^{\mathrm{T}} = \mathbf{o}$.

Since $\mathbf{c} = \mathbf{m}\mathbf{G}$, then $\mathbf{c}\mathbf{H}^{\mathrm{T}} = \mathbf{m}\mathbf{G}\mathbf{H}^{\mathrm{T}} = \mathbf{o}$.

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Encoding Using H Matrix

$$\begin{bmatrix} c_1 & c_2 & c_3 & c_4 & c_5 & c_6 & c_7 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \mathbf{0}$$

$$c_{1} + c_{4} + c_{6} + c_{7} = 0 \qquad c_{1} = c_{4} + c_{6} + c_{7}$$

$$c_{2} + c_{4} + c_{5} + c_{6} = 0 \implies c_{2} = c_{4} + c_{5} + c_{6}$$

$$c_{3} + c_{5} + c_{6} + c_{7} = 0 \qquad c_{3} = c_{5} + c_{6} + c_{7}$$

Encoding Circuit

The Encoding Problem (Revisited)

- Linearity makes the encoding problem a lot easier, yet: How to construct the G (or H) matrix of a code of minimum distance d_{min}?
- The general answer to this question will be attempted later. For the time being we will state the answer to a class of codes: the Hamming codes.

Hamming Codes

 Hamming codes constitute a class of single-error correcting codes defined as:

 $n = 2^{r} - 1, k = n - r, r > 2$

- The minimum distance of the code $d_{\min} = 3$
- Hamming codes are perfect codes.
- Construction rule:

The H matrix of a Hamming code of order *r* has as its columns all non-zero *r*-bit patterns.

Size of H: $r x(2^{r}-1)=(n-k)xn$