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Functions of a Complex Variable

= Function of a complex variable

Let s be a set complex numbers. A function f defined on
S is a rule that assigns to each z in S a complex number

Complex
numbers

Complex
numbers

The range of f




Functions of a Complex Variable

Suppose that w=u+iv Is the value of a function f at z=x+1y,
so that
u+iv=f(x+1y)

Thus each of real number u and v depends on the real
variables x and y, meaning that

F(2) =u(x,y)+iv(x,y)

Similarly if the polar coordinates r and 0, instead of x and
y, are used, we get

f(z)=u(r,8)+1v(r,0)
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Functions of a Complex Variable

= Example 2
If f(z)=2z2, then
case #1. z=x+1iy

When v=0, f is a real-valued function.

f(2)=(x+iy)° =x"—y° +i2xy
= u(x,y) =X - y%v(X,y) = 2xy

case #2: 7 —re'

f(2)=(re')* =r’e'*’ =r’cos26+ir’sin 26
— u(r,8) =r?cos26;v(r,8) =r*sin 26
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Functions of a Complex Variable

= Example 3

A real-valued function is used to illustrate some important
concepts later in this chapter is

f(2)gzf=x*+y*+i0
= Polynomial function
P(z)=a,+az+a,z°+...+a 2"

where n Is zero or a positive integer and a,, a,, ...a, are complex
constants, a, IS not Q;The domain of definition is the entire z plane

= Rational function

the quotients P(z)/Q(z) of polynomials
The domain of definition is Q(z)#0
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Functions of a Complex Variable

= Multiple-valued function

A generalization of the concept of function is a rule that
assigns more than one value to a point z in the domain
of definition.
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Functions of a Complex Variable

= Example 4

Let z denote any nonzero complex number, then z2 has
the two values

1/2 : 9
L = i\ﬁ exp(l E) Multiple-valued function

If we just choose only the positive value of +Jr

. 0
7% = \ﬁexp(l E), r >0 single-valued function



Mappings

= Graphs of Real-value functions

vvvvvvv

vvvvvvv

Note that both x and f(x) are real values.
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Mappings

= Complex-value functions
f(z)=f(X+y1))=u(X,y)+Iv(X,Yy)

mapping

.,
L
.
.
LN

‘e,
N
‘e
‘e
‘e
LN
v,
.
.

o WUOLY)V(X,Y)

u

Note that here X, y, u(x,y) and v(x,y) are all real values.



Mappings

= Examples
y V
] —> ®
wW=z+1=(X+1)+1y Z(X,y) w(x+1,y)
Translation Mapping
X u
y V
W=2z=X-Yyi A7)
Reflection Mapping
\, .W(Xi-y)
s
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Mappings
= Example

w=iz=i(re') = rexp(i(6 + %)) Rotation Mapping

y \Y;

w T
° il
2
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Mappings

= Example 1

2 2 2
W=2z" U=X —-Yy°,v=2Xy
Let u=c,>0 in the w plane, then x?-y?=c, in the z plane
Let v=c,>0 in the w plane, then 2xy=c, in the z plane

y v
u=c; >0

—— e ——p=—v=C, >0
AAY4
\\
=l O --.\‘ 0 U
N
\
3

\
\
|
1
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Mappings

= Example 2

The domain x>0, y>0, xy<1 consists of all points lying on
the upper branches of hyperbolas

u=x"-y?
y v=2Xy=2=Xxy=1
Al | D ) ,
1 D 2i E
| 2
\

x=0,y>0 |\

e e s i e
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Mappings

= Example 3

W= 7% =r%"% In polar coordinates
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Mappings by the Exponential Function

= The exponential function

z X+i XI -
w=e’ =" =g*e™, z=Xx+iy
Pe’ p=e, b=y
v 1
X=16

U

I
BN
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Mappings by the Exponential Function

= Example 2

w=exp(z)

16
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Mappings by the Exponential Function

= Example 3
y v ,
’m' ///
///
) /
___________ A e e o ///
/ \(P &
/
O X O

w=exp(z)=ex*y
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Limits

For a given positive value g, there exists a positive value o
(depends on €) such that
when 0 <|z-z,| <6, we have [f(z)-w,|< €

meaning the point w=f(z) can be made arbitrarily chose to w,
If we choose the point z close enough to z, but distinct from
It.

V U
S lim f(z2) =w,
/ g Y 12
€ 0
oW
g | M‘./)
\ Wo
/
/:00/—\1 W /
\ = iy sy
L °/
o ~--" «x O| u
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Limits

The uniqueness of limit
If a limit of a function f(z) exists at a point zO0, it is unique.
Proof: suppose that lim f(z) =w, &lim f(z) =w,

21, 21,

then Ve/2>0,36,>0,36,>0
when 0<z-z,<x&—> |f(z)-w,|<e/2;
0dz-z ko —> |f(2)-wl<el2;
Let 6=min(5,,5,) , when 0<|z-z,|<5, we have
=W, =W, [H (T(2) =W,) = (T(2) —w) |

< f(2)-w, | +] f(z)—w1|<g+§:g
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Limits

= Example 1
Show that f(z)=iz/2in the open disk |z|<1, then
: i
|ZILI‘11 f(2) =5
Proof: _ o1l (2ot
L0z 0 |i||z-1] |z-
f —_— =l — ——|= =
| 1(2) 2I | > 2| > >
Ve&>0,36 =2¢&,54t. y v
when 0<]z-1|<d(=2¢) // /x:\‘b/‘q}\ 1 'i/Pf(:)
: ,, o D2 \ o
— ' : o v 1/ [ O z
:>0<|Z 1|<g:>|f(z)—l2|<g & W
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Limits

= Example 2
If f== then the limit lim f(z) does not exist.

z=(x,0) lim X+!O =1
x=0 X —10 y
# z=(0,y) ¢
7=(0,y) |ingg+!y _ 1 !
y— — |
y /C\ <t
0, )L/ = (x, 0)
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Theorems on Limits

= Theorem 1
Let f(z2)=u(x,y)+iv(x,y) Z=X+ly

and  z, =X, +iyy; W, = U, +iv,

then _
lim f (z) =w, ()
If and only If
. _ ; _ ) b
(X'WILr(TX]o’Vo)u(X’ )=t an (x,y)ILr(Qo,yo)V(X’ )=V ©
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Theorems on Limits

= Proof: (b)=>(a)
lim  u(x,y)=u, & lim v(x,y)=v, => limf(z)=w,

(%, ¥)—=>(X%:Yo) (X,y)—=>(X.Yo) 21,

Vel2>0,46,>0,36, >0st.

When O<\/(X—XO)2+(y_yo)2<51 — |U(X,y)_uo|<§

0<\/(x—x0)2+(y—y0)2 <5, = V(X% Y)-V, |<§

Let O =mINn(d;,0,) When 0<\/'/(x—x0)2+(y—y0)2 <06,iel0<qz-z,]<o
| T(2) =W H (X, y) +1v(X, ¥)) = (U +1V) | S UX, y) —Uy +1(V(X, Y) = V,) |

E €&
U0 Y) Uy [+ V(6 Y) vy < S +£ =5
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Theorems on Limits

= Proof: (a)=>(b)

lim f (z) =w, lim )U(x,y)=u0 & lim )v(x,y):vo

L—1, (X’y)_)(X01yO (Xiy)_)(XO’yO

Ve>0,40>0st. when 0<z-27,]<0 = |f(2)-w,|<e
| T(2) =W [H u(X, y) +1v(X, y) = (Us +1v) |
= (U(X, Y) =Up) +1(V(X, ) =V,) [< &
[u(X, y) = U [<[ (U(X, ) =Up) +1(V(X, ) —Vo) [< &
[V(X, Y) = Vo <] (U(X, Y) =) +1(V(X, ) Vo) [< &

Thus  [U(X Y)—Uy [<&|v(X, y) -V, < e
When (X,y)=2(Xq,Yo)
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Theorems on Limits

= Theorem 2
Let limf(z=w, and limF(z)=W,
then !Lr?[f (2)£F(2)]=w, £ W,

lim[ f (2)F (2)] = woW,
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Theorems on Limits

limf(z)=w, & ZILT F(z)=W, —> ZIi%rg)[f(z)F(z)]:woW0

Let  f(2)=u(x, y)+iv(X, y), F(z) =U (X, y) +iV (X, V)
Z, =Xy +1Yo; W, = U, +1Vy; W, =U, +1V,

f(2)F(z) =(uU -wW)+i1(vU +uV)

!'El T(z) =W, When (.y)=> (Xo.Yo):
i U(X,y)=2Ug; V(X,y)2Vg & U(Xy)2Up; V(XY)2 Vo,
lim F(z) =W,

N
Re(f)F@): (UU, —V,V,)

wW,
IM(f@Z)F(2)): (VoUq +UoV,)
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Theorems on Limits

It is easy to verify the limits

limc=c limz =z, limz"=z,(n=12,...)

251, 220 27

For the polynomial

P(z)=a,+az+a,z° +...+a 2"
We have that

lim P(z) = P(z,)

27,
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Limits Involving the Point at Infinity

= Riemannsphere & Stereographic Projection

N: the north pole
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Limits Involving the Point at Infinity

= The € Neighborhood of Infinity

2N

N

When the radius R is large enough

i.e. for each small positive number ¢
R=1/¢

The region of |z|>R=1/¢ is called the
€ Neighborhood of Infinity()
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Limits Involving the Point at Infinity

= Theorem

If z, and w,, are points in the z and w planes,
respectively, then

im f(z) =0 if |im——=0
21 717, f(z)

- _ . : 1
imf@)=w, i fimf()=w,
Z—>00 7> Z

: | : 1

lim f (z) = iff  lIM———=0

Z—>00 z—0
(<)

30



Limits Involving the Point at Infinity

= Examples
NV , 2+ 1
lim = 00 since lim - =)
g1 7+ 1 bl 123
27+ i 2/z 247
lim T — 2 since lim (2/2 )+l — lim e = 2.
=00 741 =0 (1/2) + =0 147z
273 — 1 | /A +1 . z+ 7
lim — 00 since lim — lim = ().
z—>00 72 4+ 1 z—0 (2/2,3)— 1 70 2 — 23
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Continuity

Continuity

A function is continuous at a point z, If
lim f(z) = f(z,)

meaning that

the function f has a limit at point z, and

the limit is equal to the value of f(z)

For a given positive number ¢, there exists a positive number 9, s.t.

When |Z—Z,|<0 | f(2)-f(zy) <&
0<z-2,[<067?
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Continuity

= Theorem 1
A composition of continuous functions is itself continuous.

Suppose w=f(z) is a continuous at the point z,;
g=9g(f(z)) is continuous at the point f(z,)

Then the composition g(f(z)) is continuous at the point z,
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Continuity

= Theorem 2

If a function f (z) Is continuous and nonzero at a point z,,
then f (z) # 0 throughout some neighborhood of that point.

Proof lim f(z2) = f(ZO);éO

2L e
L f(z,) |
(Ve= | (°)|>035>0 s.t.
1@t ko= %)
f(z
If f(z)=0, then | 1:(Zo)l<| (2°)| Ve < f(z,)]

Contradiction!
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Continuity

Theorem 3

If a function f is continuous throughout a region R that Is
both closed and bounded, there exists a nonnegative real
number M such that

| f(2)|<KM for all points z in R

where equality holds for at least one such z.

Note: | £(2) = \/UZ(X, y)+Vi(X,y)

where u(X,y) and v(X,y) are continuous real functions
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Derivatives

Derivative
Let f be a function whose domain of definition contains
a neighborhood |z-z,|<e of a point z,. The derivative of f
at z, 1s the limit _

° £ 1(z,) = lim {2 =1 (Z)

11 l— ZO

And the function f is said to be differentiable at z, when
f*(z,) exists.
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Derivatives

= llustration of Derivative

fi(z) = lim A =1 (%)
21 L— 1,
f(z,+Az)-f(z,)
Az

)=l

Z=12,+Az

Aw = f(z,+Az)—f(z,)

37
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Derivatives

= Example 1
Suppose that f(z)=z2. At any point z

. AW S L
lim—=Ilim (2+42)" -2 =lim(2z+ Az) =212
Az—0 A7 Az—0 AZ Az—0

since 2z + Az is a polynomial in Az. Hence dw/dz=2z or ’(z)=2z.
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Derivatives

= Example 2
|f f(Z):Z, then AW _ Z+AZ—12 _ Z+AZ—12 _ AZ
AZ AZ AZ AZ
AZ = (AX, Ay) — (0,0) In any direction Ay
(Jase #2
Case #1: Ax>0,Ay=0 i
‘1“ Case #1
AZ —j g
jim 22 2 X190y ol
-0 Az AX+10 { '
Case #2: Ax=0, Ay—->0
lim Az 0-1Ay _ 1

m>0A7 O+ IAY

Since the limit is unique, this function does not exist anywhere
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Derivatives

Example 3
Consider the real-valued function f(z)=|z|>. Here

2 2 o A 5
AW:|Z—|—AZ| | Z| :(2+Az)(z+Az) ZZ=z+Az+z§
Az Az Az Az
Case #1: Ax=>0, Ay=0
I|m(z+Az+zA—)—I|m(z+Ax+z X_!O):E+z
Ax—0 JAVARRR S AX+10
Case #2: Ax=0, Ay—->0
I|m(z+Az+zA—)—I|m(z |Ay+zo_!Ay):E—z
Ay—0 AZ Ay—0 0+ |Ay
Z+2=12—-1=>17=0 dw/dz can not exist when z is not 0
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Derivatives

= Continuity & Derivative
Continuity@{ﬁ Derivative

For instance,
f(2)=|z|? is continuous at each point, however, dw/dz does not exists when z is not 0

Derivative ——> Continuity

i f (2)- f (2,)] = lim f(zi_z(zo)!m)(z 2.)=f'(z,)0=0

Note: The existence of the derivative of a function at a point implies the continuity
of the function at that point.
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Differentiation Formulas

= Differentiation Formulas

d da o d g
EC:O’EZ_L dZ[cf (2)]=cf '(2)

d F(2)=9(f (2))
L[2'1=n2""  Refertopp7 (13) Fi(z,) = 9'(f (2,)) f(2)
; dw  dwW dw
S@+0@]=f +9'2) dz  dw dz

%[f(z)og(z)]: f(z)eg'(z)+ f'(z)eg(z)

d [f(Z)]: 1'(2)9(2)-1(2)*g'(2)
dz "9(z) [9(2)T
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Differentiation Formulas

= Example

To find the derivative of (2z2+i)°, write w=2z%+i and
W=wp". Then

(227 +i) = (Swhw' =5(22" +1)*(47) = 202(22" +i)
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Analytic Function

= Analytic at a point z,

A function f of the complex variable z is analytic at a
point z, If It has a derivative at each point in some
neighborhood of z,.

Note that if f is analytic at a point z,, it must be analytic at each
point in some neighborhood of z,

= Analytic function

A function f Is analytic In an open set If It has a
derivative everywhere in that set.

Note that if f iIs analytic in a set S which is not open, it is to be
understood that f Is analytic in an open set containing S.
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Analytic Function

= Analytic vs. Derivative

» For a point
Analytic =>» Derivative\/
Derivative =» Analytic x

» For all points In an open set
Analytic =>» Derivative\/
Derivative =» Analytic

f is analytic in an open set D iff fis derivative in D
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Analytic Function

= Singular point (singularity)

If function f fails to be analytic at a point z, but is analytic at
some point in every neighborhood of z,, then z, Is called a
singular point.

For instance, the function f(z)=1/z is analytic at every point in the
finite plane except for the point of (0,0). Thus (0,0) is the
singular point of function 1/z.

= Entire Function

An entire function Is a function that Is analytic at each point
In the entire finite plane.

For instance, the polynomial is entire function.
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Analytic Function

Property 1

If two functions are analytic in a domain D, then
their sum and product are both analytic in D

their quotient is analytic in D provided the function in the
denominator does not vanish at any point in D

Property 2

From the chain rule for the derivative of a composite function, a
composition of two analytic functions is analytic.

dig(f(z)) =gt (2)]1'(2)
V4

a7



Analytic Function

= Theorem

If £ ’(z) = 0 everywhere 1n a domain D, then f (z) must be
constant throughout D.

f'(z)=u +iv,=v,—iu =0

u,=u,=0&v, =v, =0

X

3_2 = (gradu)U gradu=u.i +U, ]

U is the unit vector along L
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Example z2 is Analytic

Z=X+1Yy
f(z)=2" =x*-y*+2ixy =u+iv
— v2 42
u=Xx"-Yy N a_uzzx :ﬂ a_u:_gy:_ﬂ
V:2Xy 0 X ay ay 0 X

. T’ exists & single-valued V finite z.

i.e., z2is an entire function.



Example: z* is Not Analytic

Z=X+1Yy
f(z)=z*=x—-iy =u+iv
U= X
N a_u:]__—/_-_]_:ﬂ a_u:():_ﬂ
V=-Yy 0 X oy oy 0 X

. ' doesn’t exist V z, even though it is continuous every where.

l.e., z?is nowhere analytic.



Examples

Example

Suppose that a function T(2)=u(xy)+vXy) and its
conjugatef (z) =u(x, y)-iv(x,y)  are both analytic in a
given domain D. Show that f(z) must be constant
throughout D.

Proof: f(z)=u(X,y)+Iv(X,y) isanalytic, then Uy =V, U, =-V,

f(z) =u(Xx,y)—1v(X,y) is analytic, then Uy =-V,,U, =V,

>u,=0,v,=0 >  f'(z)=u,+iv, =0

Based on the Theorem in pp. 74, we have that f is constant throughout D
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Examples

= Example

Suppose that f is analytic throughout a given region D, and
the modulus [f(z)| Is constant throughout D, then the
function f(z) must be constant there too.

Proof:
If(z))=c, forallzinD
where c Is real constant.
If c=0, then f(z)=0 everywhere in D.
If ¢ #0, we have

f(2)f(z)=c* —=> ()= fc(z), f (2)  0inD

Both f and it conjugate are analytic, thus f must be constant in D. (Refer to Ex. 3)

52



Uniquely Determined Analytic Function

= Lemma
Suppose that
a) A function f is analytic throughout a domain D;

) f(z)=0 at each point z of a domain or line segment
contained in D.

Then f (z) = 0 1n D; that 1s, f (z) 1s 1dentically equal to zero
throughout D.

Refer to Chap. 6 for the proof.
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Uniquely Determined Analytic Function

= Theorem

A function that Is analytic in a domain D is uniquely
determined over D by its values in a domain, or along a
line segment, contained in D.

1(2)=9(2)

i(z) 9(2)
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Reflection Principle

Theorem

Suppose that a function f is analytic in some domain D
which contains a segment of the x axis and whose lower
half is the reflection of the upper half with respect to that
axis. Then f(2) = f(2)

for each point z in the domain if and only if f (x) is real for

each point x on the segment.
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