Analytic Functions

Functions of a Complex Variable

- Function of a complex variable

Let s be a set complex numbers. A function f defined on S is a rule that assigns to each z in S a complex number W.

The domain of definition of f
The range of f

Functions of a Complex Variable

Suppose that $\mathrm{w}=\mathrm{u}+\mathrm{iv}$ is the value of a function f at $\mathrm{z}=\mathrm{x}+\mathrm{iy}$, so that

$$
u+i v=f(x+i y)
$$

Thus each of real number u and v depends on the real variables x and y , meaning that

$$
f(z)=u(x, y)+i v(x, y)
$$

Similarly if the polar coordinates r and θ, instead of x and y , are used, we get

$$
f(z)=u(r, \theta)+i v(r, \theta)
$$

Functions of a Complex Variable

- Example 2

If $f(z)=z^{2}$, then
When $v=0, f$ is a real-valued function.
case \#1: $\quad z=x+i y$

$$
\begin{gathered}
f(z)=(x+i y)^{2}=x^{2}-y^{2}+i 2 x y \\
\longleftrightarrow u(x, y)=x^{2}-y^{2} ; v(x, y)=2 x y
\end{gathered}
$$

case \#2: $z=r e^{i \theta}$

$$
f(z)=\left(r e^{i \theta}\right)^{2}=r^{2} e^{i 2 \theta}=r^{2} \cos 2 \theta+i r^{2} \sin 2 \theta
$$

$$
u(r, \theta)=r^{2} \cos 2 \theta ; v(r, \theta)=r^{2} \sin 2 \theta
$$

Functions of a Complex Variable

- Example 3

A real-valued function is used to illustrate some important concepts later in this chapter is

$$
f(z)=|z|^{2}=x^{2}+y^{2}+i 0
$$

- Polynomial function

$$
P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n}
$$

where n is zero or a positive integer and $\mathrm{a}_{0}, \mathrm{a}_{1}, \ldots \mathrm{a}_{\mathrm{n}}$ are complex constants, a_{n} is not 0 ; The domain of definition is the entire z plane

- Rational function
the quotients $\mathrm{P}(\mathrm{z}) / \mathrm{Q}(\mathrm{z})$ of polynomials
The domain of definition is $Q(z) \neq 0$

Functions of a Complex Variable

- Multiple-valued function

A generalization of the concept of function is a rule that assigns more than one value to a point z in the domain of definition.

Functions of a Complex Variable

- Example 4

Let z denote any nonzero complex number, then $\mathrm{z}^{1 / 2}$ has the two values

$$
z^{1 / 2}= \pm \sqrt{r} \exp \left(i \frac{\theta}{2}\right) \quad \text { Multiple-valued tunction }
$$

If we just choose only the positive value of $\pm \sqrt{r}$

$$
z^{1 / 2}=\sqrt{r} \exp \left(i \frac{\theta}{2}\right), r>0 \text { Single-valued function }
$$

Mappings

- Graphs of Real-value functions

$f=e^{x}$

Note that both x and $f(x)$ are real values.

Mappings

- Complex-value functions

$$
f(z)=f(x+y i)=u(x, y)+i v(x, y)
$$

Note that here $x, y, u(x, y)$ and $v(x, y)$ are all real values.

Mappings

- Examples
$w=z+1=(x+1)+i y$
Translation Mapping

$w=\bar{z}=x-y i$

Reflection Mapping

Mappings

- Example

$$
w=i z=i\left(r e^{i \theta}\right)=r \exp \left(i\left(\theta+\frac{\pi}{2}\right)\right)
$$

Mappings

- Example 1

$$
w=z^{2} \quad u=x^{2}-y^{2}, v=2 x y
$$

Let $u=c_{1}>0$ in the w plane, then $x^{2}-y^{2}=c_{1}$ in the z plane
Let $\mathrm{v}=\mathrm{c}_{2}>0$ in the w plane, then $2 \mathrm{xy}=\mathrm{c}_{2}$ in the z plane

Mappings

- Example 2

The domain $\mathrm{x}>0, \mathrm{y}>0, \mathrm{xy}<1$ consists of all points lying on the upper branches of hyperbolas

$$
u=x^{2}-y^{2}
$$

Mappings

- Example 3

$$
w=z^{2}=r^{2} e^{i 2 \theta} \quad \text { In polar coordinates }
$$

Mappings by the Exponential Function

- The exponential function

$$
\begin{aligned}
w=e^{z}=e^{x+i y}= & e^{x} e^{i y}, z=x+i y \\
& \rho \mathrm{e}^{\mathrm{i} \theta} \rho=\mathrm{e}^{\mathrm{x}}, \theta=\mathrm{y}
\end{aligned}
$$

Mappings by the Exponential Function

- Example 2

Mappings by the Exponential Function

- Example 3

$$
w=\exp (z)=e^{x+y i}
$$

Limits

- For a given positive value ε, there exists a positive value δ (depends on ε) such that
when $0<\left|\mathrm{z}-\mathrm{z}_{0}\right|<\delta$, we have $\left|\mathrm{f}(\mathrm{z})-\mathrm{w}_{0}\right|<\varepsilon$
meaning the point $\mathrm{w}=\mathrm{f}(\mathrm{z})$ can be made arbitrarily chose to w_{0} if we choose the point z close enough to z_{0} but distinct from it.

$\lim _{z \rightarrow z_{0}} f(z)=w_{0}$

Limits

- The uniqueness of limit

If a limit of a function $\mathrm{f}(\mathrm{z})$ exists at a point z 0 , it is unique.
Proof: suppose that $\lim _{z \rightarrow z_{0}} f(z)=w_{0} \& \lim _{z \rightarrow z_{0}} f(z)=w_{1}$
then $\forall \varepsilon / 2>0, \exists \delta_{0}>0, \exists \delta_{1}>0$
when $0<\left|z-z_{0}\right|<\delta_{0} \longrightarrow\left|f(z)-w_{0}\right|<\varepsilon / 2$;

$$
0<\left|z-z_{0}\right|<\delta_{1} \longmapsto\left|f(z)-w_{1}\right|<\varepsilon / 2
$$

Let $\delta=\min \left(\delta_{0}, \delta_{1}\right)$, when $0<\left|z-z_{0}\right|<\delta$, we have

$$
\begin{aligned}
& \Rightarrow\left|w_{1}-w_{0}\right|=\left|\left(f(z)-w_{0}\right)-\left(f(z)-w_{1}\right)\right| \\
& \quad \leq\left|f(z)-w_{0}\right|+\left|f(z)-w_{1}\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

Limits

- Example 1

Show that $f(z)=i \bar{z} / 2$ in the open disk $|z|<1$, then

Proof:

$$
\lim _{z \rightarrow 1} f(z)=\frac{i}{2}
$$

$$
\left|f(z)-\frac{i}{2}\right|=\left|\frac{i \bar{z}}{2}-\frac{i}{2}\right|=\frac{|i \| \bar{z}-1|}{2}=\frac{|z-1|}{2}
$$

$\forall \varepsilon>0, \exists \delta=2 \varepsilon$, s.t.
when $0<|z-1|<\delta(=2 \varepsilon)$

$$
\Rightarrow 0<\frac{|z-1|}{2}<\varepsilon \Rightarrow\left|f(z)-\frac{i}{2}\right|<\varepsilon
$$

Limits

- Example 2

If $f(z)=\frac{z}{\bar{z}}$ then the limit $\lim _{z \rightarrow 0} f(z)$ does not exist.

$$
\begin{array}{cc}
z=(x, 0) & \lim _{x \rightarrow 0} \frac{x+i 0}{x-i 0}=1 \\
\neq \\
z=(0, y) \quad \lim _{y \rightarrow 0} \frac{0+i y}{0-i y}=-1
\end{array}
$$

Theorems on Limits

- Theorem 1

Let $f(z)=u(x, y)+i v(x, y) \quad z=x+i y$
and $\quad z_{0}=x_{0}+i y_{0} ; w_{0}=u_{0}+i v_{0}$
then

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}} f(z)=w_{0} \tag{a}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)=u_{0} \quad \text { and } \quad \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)=v_{0} \tag{b}
\end{equation*}
$$

Theorems on Limits

- Proof: (b) $\boldsymbol{\rightarrow}$ (a)
$\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)=u_{0} \& \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)=v_{0} \quad \longrightarrow \lim _{z \rightarrow z_{0}} f(z)=w_{0}$
$\forall \varepsilon / 2>0, \exists \delta_{1}>0, \exists \delta_{2}>0$ s.t.
When $0<\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta_{1} \Rightarrow\left|u(x, y)-u_{0}\right|<\frac{\varepsilon}{2}$

$$
0<\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta_{2} \Rightarrow\left|v(x, y)-v_{0}\right|<\frac{\varepsilon}{2}
$$

Let $\delta=\min \left(\delta_{1}, \delta_{2}\right)$ When $0<\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta$,i.e. $0<\left|z-z_{0}\right|<\delta$ $\left|f(z)-w_{0}\right|=\left|(u(x, y)+i v(x, y))-\left(u_{0}+i v_{0}\right)\right|=\left|u(x, y)-u_{0}+i\left(v(x, y)-v_{0}\right)\right|$

$$
\leq\left|u(x, y)-u_{0}\right|+\left|v(x, y)-v_{0}\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

Theorems on Limits

- Proof: (a) \rightarrow (b)
$\lim _{z \rightarrow z_{0}} f(z)=w_{0} \quad \square \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)=u_{0} \quad \& \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)=v_{0}$
$\forall \varepsilon>0, \exists \delta>0$ s.t. When $0<\left|z-z_{0}\right|<\delta \Longrightarrow\left|f(z)-w_{0}\right|<\varepsilon$

$$
\begin{aligned}
& \left|f(z)-w_{0}\right|=\left|u(x, y)+i v(x, y)-\left(u_{0}+i v_{0}\right)\right| \\
& =\left|\left(u(x, y)-u_{0}\right)+i\left(v(x, y)-v_{0}\right)\right|<\varepsilon \\
& \left|u(x, y)-u_{0}\right| \leq\left|\left(u(x, y)-u_{0}\right)+i\left(v(x, y)-v_{0}\right)\right|<\varepsilon \\
& \left|v(x, y)-v_{0}\right| \leq\left|\left(u(x, y)-u_{0}\right)+i\left(v(x, y)-v_{0}\right)\right|<\varepsilon
\end{aligned}
$$

Thus

$$
\left|u(x, y)-u_{0}\right|<\varepsilon ;\left|v(x, y)-v_{0}\right|<\varepsilon
$$

When $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$

Theorems on Limits

- Theorem 2

Let $\lim _{z \rightarrow z_{0}} f(z)=w_{0}$ and $\quad \lim _{z \rightarrow z_{0}} F(z)=W_{0}$
then

$$
\begin{aligned}
& \lim _{z \rightarrow z_{0}}[f(z) \pm F(z)]=w_{0} \pm V \\
& \lim _{z \rightarrow z_{0}}[f(z) F(z)]=w_{0} W_{0} \\
& \lim _{z \rightarrow z_{0}}\left[\frac{f(z)}{F(z)}\right]=\frac{w_{0}}{W_{0}}, W_{0} \neq 0
\end{aligned}
$$

Theorems on Limits

$\lim _{z \rightarrow z_{0}} f(z)=w_{0} \quad \& \quad \lim _{z \rightarrow z_{0}} F(z)=W_{0} \longleftrightarrow \lim _{z \rightarrow z_{0}}[f(z) F(z)]=w_{0} W_{0}$
Let

$$
\begin{aligned}
& f(z)=u(x, y)+i v(x, y), F(z)=U(x, y)+i V(x, y) \\
& z_{0}=x_{0}+i y_{0} ; w_{0}=u_{0}+i v_{0} ; W_{0}=U_{0}+i V_{0} \\
& f(z) F(z)=(u U-v V)+i(v U+u V)
\end{aligned}
$$

$\lim _{z \rightarrow z_{0}} f(z)=w_{0}$
$\lim _{z \rightarrow z} F(z)=W_{0}$

$\operatorname{Re}(\mathrm{f}(\mathrm{z}) \mathrm{F}(\mathrm{z})):\left(u_{0} U_{0}-v_{0} V_{0}\right)$
$\operatorname{Im}(\mathrm{f}(\mathrm{z}) \mathrm{F}(\mathrm{z})): \quad\left(v_{0} U_{0}+u_{0} V_{0}\right)$

$$
\mathbf{w}_{0} \mathbf{W}_{0}
$$

Theorems on Limits

It is easy to verify the limits

$$
\lim _{z \rightarrow z_{0}} c=c \quad \lim _{z \rightarrow z_{0}} z=z_{0} \quad \lim _{z \rightarrow z_{0}} z^{n}=z_{0}^{n}(n=1,2, \ldots)
$$

For the polynomial

$$
P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n}
$$

We have that

$$
\lim _{z \rightarrow z_{0}} P(z)=P\left(z_{0}\right)
$$

Limits Involving the Point at Infinity

- Riemannsphere \& Stereographic Projection

N : the north pole

Limits Involving the Point at Infinity

- The ε Neighborhood of Infinity

When the radius R is large enough
i.e. for each small positive number ε

$$
R=1 / \varepsilon
$$

The region of $|z|>R=1 / \varepsilon$ is called the ε Neighborhood of Infinity (∞)

Limits Involving the Point at Infinity

- Theorem

If z_{0} and w_{0} are points in the z and w planes, respectively, then

$$
\begin{array}{lll}
\lim _{z \rightarrow z_{0}} f(z)=\infty & \text { iff } & \lim _{z \rightarrow z_{0}} \frac{1}{f(z)}=0 \\
\lim _{z \rightarrow \infty} f(z)=w_{0} & \text { iff } & \lim _{z \rightarrow 0} f\left(\frac{1}{z}\right)=w_{0} \\
\lim _{z \rightarrow \infty} f(z)=\infty & \text { iff } & \lim _{z \rightarrow 0} \frac{1}{f\left(\frac{1}{z}\right)}=0
\end{array}
$$

Limits Involving the Point at Infinity

- Examples

$$
\begin{aligned}
& \lim _{z \rightarrow-1} \frac{i z+3}{z+1}=\infty \quad \text { since } \quad \lim _{z \rightarrow-1} \frac{z+1}{i z+3}=0 \\
& \lim _{z \rightarrow \infty} \frac{2 z+i}{z+1}=2 \quad \text { since } \quad \lim _{z \rightarrow 0} \frac{(2 / z)+i}{(1 / z)+1}=\lim _{z \rightarrow 0} \frac{2+i z}{1+z}=2 . \\
& \lim _{z \rightarrow \infty} \frac{2 z^{3}-1}{z^{2}+1}=\infty \quad \text { since } \quad \lim _{z \rightarrow 0} \frac{\left(1 / z^{2}\right)+1}{\left(2 / z^{3}\right)-1}=\lim _{z \rightarrow 0} \frac{z+z^{3}}{2-z^{3}}=0 .
\end{aligned}
$$

Continuity

- Continuity

A function is continuous at a point z_{0} if

$$
\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)
$$

meaning that

1. the function f has a limit at point z_{0} and
2. the limit is equal to the value of $f\left(z_{0}\right)$

For a given positive number ε, there exists a positive number δ, s.t.
When

$$
\left|z-z_{0}\right|<\delta \quad\left|f(z)-f\left(z_{0}\right)\right|<\varepsilon
$$

$$
0<\left|z-z_{0}\right|<\delta ?
$$

Continuity

- Theorem 1

A composition of continuous functions is itself continuous.
Suppose $w=f(z)$ is a continuous at the point z_{0}; $g=g(f(z))$ is continuous at the point $f\left(z_{0}\right)$

Then the composition $g(f(z))$ is continuous at the point z_{0}

Continuity

- Theorem 2

If a function $\mathrm{f}(\mathrm{z})$ is continuous and nonzero at a point z_{0}, then $\mathrm{f}(\mathrm{z}) \neq 0$ throughout some neighborhood of that point.
Proof $\quad \lim _{z \rightarrow y_{n}} f(z)=f\left(z_{0}\right) \neq 0$

$$
\forall \varepsilon=\frac{\left|f\left(z_{0}\right)\right|}{2}>0, \exists \delta>0 \text {, s.t. }
$$

When

$$
\begin{aligned}
& \left|z-z_{0}\right|<\delta \\
& \left|f(z)-f\left(z_{0}\right)\right|<\varepsilon=\frac{\left|f\left(z_{0}\right)\right|}{2}
\end{aligned}
$$

If $\mathrm{f}(\mathrm{z})=0$, then $\quad\left|f\left(z_{0}\right)\right|<\frac{\left|f\left(z_{0}\right)\right|}{2}$

$$
\forall \varepsilon \leq\left|f\left(z_{0}\right)\right|
$$

Contradiction!

Continuity

- Theorem 3

If a function f is continuous throughout a region R that is both closed and bounded, there exists a nonnegative real number M such that

$$
|f(z)| \leq M \quad \text { for all points } \mathrm{z} \text { in } \mathrm{R}
$$

where equality holds for at least one such z .

Note: $\quad|f(z)|=\sqrt{u^{2}(x, y)+v^{2}(x, y)}$
where $u(x, y)$ and $v(x, y)$ are continuous real functions

Derivatives

- Derivative

Let f be a function whose domain of definition contains a neighborhood $\left|z-z_{0}\right|<\varepsilon$ of a point z_{0}. The derivative of f at z_{0} is the limit

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

And the function f is said to be differentiable at z_{0} when $f^{\prime}\left(z_{0}\right)$ exists.

Derivatives

- Illustration of Derivative

$$
\begin{aligned}
& f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \\
& f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}
\end{aligned}
$$

$$
z=z_{0}+\Delta z
$$

$$
\Delta w=f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)
$$

$$
\frac{d w}{d z}=\lim _{\Delta z \rightarrow 0} \frac{\Delta w}{\Delta z}
$$

Derivatives

- Example 1

Suppose that $f(z)=z^{2}$. At any point z

$$
\lim _{\Delta z \rightarrow 0} \frac{\Delta w}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{(z+\Delta z)^{2}-z^{2}}{\Delta z}=\lim _{\Delta z \rightarrow 0}(2 z+\Delta z)=2 z
$$

since $2 \mathrm{z}+\Delta \mathrm{z}$ is a polynomial in $\Delta \mathrm{z}$. Hence $\mathrm{dw} / \mathrm{dz}=2 \mathrm{z}$ or $\mathrm{f}^{\prime}(\mathrm{z})=2 \mathrm{z}$.

Derivatives

- Example 2

If $\mathrm{f}(\mathrm{z})=\overline{\mathrm{Z}}$, then $\frac{\Delta w}{\Delta z}=\frac{\overline{z+\Delta z}-\bar{z}}{\Delta z}=\frac{\bar{z}+\overline{\Delta z}-\bar{z}}{\Delta z}=\frac{\overline{\Delta z}}{\Delta z}$
$\Delta z=(\Delta x, \Delta y) \rightarrow(0,0) \quad$ In any direction

Case \#1: $\Delta x \rightarrow 0, \Delta y=0$

$$
\lim _{\Delta x \rightarrow 0} \frac{\overline{\Delta z}}{\Delta z}=\frac{\Delta x-i 0}{\Delta x+i 0}=1
$$

Case \#2: $\Delta x=0, \Delta y \rightarrow 0$

$$
\lim _{\Delta x \rightarrow 0} \frac{\overline{\Delta z}}{\Delta z}=\frac{0-i \Delta y}{0+i \Delta y}=-1
$$

Since the limit is unique, this function does not exist anywhere

Derivatives

- Example 3

Consider the real-valued function $f(z)=|z|^{2}$. Here

$$
\frac{\Delta w}{\Delta z}=\frac{|z+\Delta z|^{2}-|z|^{2}}{\Delta z}=\frac{(z+\Delta z)(\bar{z}+\overline{\Delta z})-z \bar{z}}{\Delta z}=\bar{z}+\overline{\Delta z}+z \frac{\overline{\Delta z}}{\Delta z}
$$

Case \#1: $\Delta x \rightarrow 0, \Delta y=0$

$$
\lim _{\Delta x \rightarrow 0}\left(\bar{z}+\overline{\Delta z}+z \frac{\overline{\Delta z}}{\Delta z}\right)=\lim _{\Delta x \rightarrow 0}\left(\bar{z}+\Delta x+z \frac{\Delta x-i 0}{\Delta x+i 0}\right)=\bar{z}+z
$$

Case \#2: $\Delta x=0, \Delta y \rightarrow 0$

$$
\begin{aligned}
& \lim _{\Delta y \rightarrow 0}\left(\bar{z}+\overline{\Delta z}+z \frac{\overline{\Delta z}}{\Delta z}\right)=\lim _{\Delta y \rightarrow 0}\left(\bar{z}-i \Delta y+z \frac{0-i \Delta y}{0+i \Delta y}\right)=\bar{z}-z \\
& \bar{z}+z=\bar{z}-z \Rightarrow z=0 \quad \text { dw/dz can not exist when } \mathrm{z} \text { is not } 0
\end{aligned}
$$

Derivatives

- Continuity \& Derivative Continuity $\underset{\sim}{\Delta} \Rightarrow$ Derivative

For instance, $f(z)=|z|^{2}$ is continuous at each point, however, $d w / d z$ does not exists when z is not 0

Derivative \longleftrightarrow Continuity

$$
\lim _{z \rightarrow z_{0}}\left[f(z)-f\left(z_{0}\right)\right]=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)=f^{\prime}\left(z_{0}\right) 0=0
$$

Note: The existence of the derivative of a function at a point implies the continuity of the function at that point.

Differentiation Formulas

- Differentiation Formulas

$$
\begin{array}{ll}
\frac{d}{d z} c=0 ; \frac{d}{d z} z=1 ; \frac{d}{d z}[c f(z)]=c f^{\prime}(z) & F(z)=g(f(z)) \\
\frac{d}{d z}\left[z^{n}\right]=n z^{n-1} \quad \text { Refer to pp.7 (13) } & F^{\prime}\left(z_{0}\right)=g^{\prime}\left(f\left(z_{0}\right)\right) f^{\prime}\left(z_{0}\right) \\
\frac{d W}{d z}=\frac{d W}{d w} \frac{d w}{d z} \\
\frac{d}{d z}[f(z) \pm g(z)]=f^{\prime}(z) \pm g^{\prime}(z) & \\
\frac{d}{d z}[f(z) \bullet g(z)]=f(z) \bullet g^{\prime}(z)+f^{\prime}(z) \bullet g(z) & \\
\frac{d}{d z}\left[\frac{f(z)}{g(z)}\right]=\frac{f^{\prime}(z) \bullet g(z)-f(z) \bullet g^{\prime}(z)}{[g(z)]^{2}}
\end{array}
$$

Differentiation Formulas

- Example

To find the derivative of $\left(2 z^{2}+i\right)^{5}$, write $\mathrm{w}=2 \mathrm{z}^{2}+\mathrm{i}$ and $\mathrm{W}=\mathrm{w}^{5}$. Then

$$
\frac{d}{d z}\left(2 z^{2}+i\right)^{5}=\left(5 w^{4}\right) w^{\prime}=5\left(2 z^{2}+i\right)^{4}(4 z)=20 z\left(2 z^{2}+i\right)^{4}
$$

Analytic Function

- Analytic at a point z_{0}

A function f of the complex variable z is analytic at a point z_{0} if it has a derivative at each point in some neighborhood of z_{0}.

Note that if f is analytic at a point z_{0}, it must be analytic at each point in some neighborhood of z_{0}

- Analytic function

A function f is analytic in an open set if it has a derivative everywhere in that set.
Note that if f is analytic in a set S which is not open, it is to be understood that f is analytic in an open set containing S.

Analytic Function

- Analytic vs. Derivative
$>$ For a point
Analytic \rightarrow Derivative Derivative \rightarrow Analytic X
$>$ For all points in an open set Analytic \rightarrow Derivative
Derivative \rightarrow Analytic
f is analytic in an open set D iff f is derivative in D

Analytic Function

- Singular point (singularity)

If function f fails to be analytic at a point z_{0} but is analytic at some point in every neighborhood of z_{0}, then z_{0} is called a singular point.
For instance, the function $f(z)=1 / z$ is analytic at every point in the finite plane except for the point of $(0,0)$. Thus $(0,0)$ is the singular point of function $1 / \mathrm{z}$.

- Entire Function

An entire function is a function that is analytic at each point in the entire finite plane.
For instance, the polynomial is entire function.

Analytic Function

- Property 1

If two functions are analytic in a domain D , then
$>$ their sum and product are both analytic in D
$>$ their quotient is analytic in D provided the function in the denominator does not vanish at any point in D

- Property 2

From the chain rule for the derivative of a composite function, a composition of two analytic functions is analytic.

$$
\frac{d}{d z} g(f(z))=g^{\prime}[f(z)] f^{\prime}(z)
$$

Analytic Function

- Theorem

If $f^{\prime}(z)=0$ everywhere in a domain D, then $f(z)$ must be constant throughout D.

$$
\begin{array}{r}
f^{\prime}(z)=u_{x}+i v_{x}=v_{y}-i u_{y}=0 \\
u_{x}=u_{y}=0 \& v_{x}=v_{y}=0
\end{array}
$$

$$
{ }^{y}
$$ U is the unit vector along L

Example z^{2} is Analytic

$$
z=x+i y
$$

$$
\begin{gathered}
f(z)=z^{2}=x^{2}-y^{2}+2 i x y=u+i v \\
\rightarrow \quad \begin{array}{l}
u=x^{2}-y^{2} \\
v=2 x y
\end{array} \rightarrow \quad \frac{\partial u}{\partial x}=2 x=\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=-2 y=-\frac{\partial v}{\partial x}
\end{gathered}
$$

$\therefore f^{\prime}$ exists \& single-valued \forall finite z.
i.e., z^{2} is an entire function.

Example: z^{*} is Not Analytic

$$
\begin{gathered}
f(z)=z^{*}=x-i y=u+i v \\
\rightarrow \quad \begin{array}{l}
u=x \\
v=-y
\end{array} \rightarrow \quad \frac{\partial u}{\partial x}=1 \neq-1=\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=0=-\frac{\partial v}{\partial x}
\end{gathered}
$$

$\therefore f^{\prime}$ doesn't exist $\forall z$, even though it is continuous every where.
i.e., z^{2} is nowhere analytic.

Examples

- Example

Suppose that a function $f(z)=u(x, y)+i v(x, y)$ and its conjugatef $(z)=u(x, y)-i v(x, y) \quad$ are both analytic in a given domain D. Show that $f(z)$ must be constant throughout D .
Proof: $f(z)=u(x, y)+i v(x, y)$ is analytic, then $u_{x}=v_{y}, u_{y}=-v_{x}$
$f(z)=u(x, y)-i v(x, y)$ is analytic, then $u_{x}=-v_{y}, u_{y}=v_{x}$

Based on the Theorem in pp. 74, we have that f is constant throughout D

Examples

- Example

Suppose that f is analytic throughout a given region D, and the modulus $|\mathrm{f}(\mathrm{z})|$ is constant throughout D , then the function $\mathrm{f}(\mathrm{z})$ must be constant there too.

Proof:

$$
|f(\mathrm{z})|=\mathrm{c}, \quad \text { for all } \mathrm{z} \text { in } \mathrm{D}
$$

where c is real constant.
If $\mathrm{c}=0$, then $\mathrm{f}(\mathrm{z})=0$ everywhere in D . If $\mathrm{c} \neq 0$, we have

$$
f(z) \overline{f(z)}=c^{2} \Longleftrightarrow \overline{f(z)}=\frac{c^{2}}{f(z)}, f(z) \neq \operatorname{0inD}
$$

Both f and it conjugate are analytic, thus f must be constant in D. (Refer to Ex. 3)

Uniquely Determined Analytic Function

- Lemma

Suppose that
a) A function f is analytic throughout a domain D;
b) $f(z)=0$ at each point z of a domain or line segment contained in D.
Then $\mathrm{f}(\mathrm{z}) \equiv 0$ in D ; that is, $\mathrm{f}(\mathrm{z})$ is identically equal to zero throughout D .

Refer to Chap. 6 for the proof.

Uniquely Determined Analytic Function

- Theorem

A function that is analytic in a domain D is uniquely determined over D by its values in a domain, or along a line segment, contained in D.

$\mathrm{f}(\mathrm{z})$

$g(Z)$

$$
f(z) \equiv g(z)
$$

Reflection Principle

- Theorem

Suppose that a function f is analytic in some domain D which contains a segment of the x axis and whose lower half is the reflection of the upper half with respect to that axis. Then

$$
\overline{f(z)}=f(\bar{z})
$$

for each point z in the domain if and only if $\mathrm{f}(\mathrm{x})$ is real for each point x on the segment.

