Cauchy-Riemann Equation



Functions of a complex variable

Let S be a setfof complex numbers.

A function defined on S is a rule that assigns to each zin S a complex

number w.
value of f atz, orf(2)
or
w= f(z)
S is the domain of definition of f
1

W= E sometimes refer to the function fitself, for simplicity.
w=1z°+1

Both a domain of definition and a rule are needed in order for a function to be
well defined.



Suppose W = U + Isrthe value of a function at f Z=X+1y
u+iv=f(x+iy)
or f(z)=u(xy)+iv(x,y)
N\ /
real-valued functions of real variables x, y
or f(z)=u(r,0)+iv(r,0)

Ex.

f(z)=2°

f(x+iy)=x"—y*+i2xy
u(x,y)=x"=y*,  v(xy)=2xy
f(re'”)=r?cos260+ir’sin 20
u(r,0)=r*cos260 v(r,0)=r’sin26

when v=0
f (Z)is a real-valued function of a complex variable.



f (Z) = P(Z) =a,+az+ a222 +...+@a_ 2" is a polynomial of degree n.
Q) ° rational function, defined when Q(z) #0
For multiple-valued functions : usually assign one to get single-valued function

B z=re’, zz0
22 =+Jre”?.  _r<O0<7z nth root
If we choose f(z):ﬁei% (r>0,-7<0<n)

T 60 &«
2 2 2

and f (0) =0,
then f is well defined on the entrie complex plane except
the ray O=r



Mappings
w=£(z) is not easy to graph as real functions are.
One can display some information about the function by indicating pairs
of corresponding points z=(x,y) and w=(u,v). (draw z and w planes

separately).

When a function f is thought of in this way. it is often refried to as a mapping, or
transformation.

inverse image image of z

S image of T



Mapping can be translation, rotation, reflection. In such cases

it is convenient to consider z and w planes to be the same.

w=z+1 translation +1

W=iz rotation 9

w=  _ reflection in real axis. 2
Z

Ex. image of curves

real number y=x’

Ay
W= 2z°
U=X2—y2
vV =2Xy ;

a hyperbola x* — y2 =C, is mapped in a one to one manner onto the line U=¢



A u=Cr>1
e > \V=C2>0
A
> U
image
right hand branch x>0, u=Cy, V =2y, /yz +C, (—oo <y< oo)

left hand branch x<O u=_Cs, V =-2y /yZ +C, (_oo <y< oo)



EXx 2. y al1 L2

Av
A A
D L2’ Q
A A Ll, (_\\\
¢ B
X1 X \
C 1 ’ ¥
0<x<1 D" C

y>0
When 0< X < point (Xlr,n)o)/es up a vertical half line, L1, as y increases
fromy=0.

2

u=x>-y?, v=2xYy
v

o

2
2 Vv 2 2 2 , 2
u=x—|—1|, VvV =-4x(u-=-X «——— a parabola with vertex at ,0
X1 (lej 1 ( 1) (Xl )

half line CD is mapped of half line C'D’
(0.y) (~v2,0)



Ex 3.

p=r?, ¢=20+2nzr (n=0,+1+2,..)

L
X

r>0, 0<@<z Onetoone p=>0, O=<g<z




Limits
Let a function f b fined at all points zin some deleted neighborhood of z
?mj; 1?(123 =W, P 213 ; :
27,

means: the limit of T (Z3s z approaches zo is wo

w = f (z) can be made arbitrarily close to wo if we choose the point z close

enough to zo but distinct from it.

(1) means that, for each positive number ,tgere is a positive number 5
such that
[f(z)-w,|<e whenver 0<|z-z)|<6 )
I v N
~~~~~~ “\\‘ W 9} :
ZOO}
X 0 u




Note:
(2) requires that f be defined at all points in some deleted neighborhood of zo

such a deleted neighborhood always exists when zois an interior point of a
region on which igdefined. We can extend the definition of limit to the case in
which zo is a boundary point of the region by agreeing that left of (2) be satisfied by
only those points z that lie in both the region and the domain

O<\z—z|<5

Example 1. s%ow if i7

f(z)=—

(2) ;

: i

imf(z)=—
(2) ;

z—1

in |z|<1, then



when z in |z]<1

‘f(z)_iz iz i‘:|z—]1

2 2 2
For any such z and any positive number &
i
f (Z)_E <& whenever 0<|z-1<2¢
A
y

5 oo

[ oZ /
— —>

\ ;! i X




When a limit of a function f (ez>§sts at a point , itZsOunique.

Ifnot, suppose  [im f (z) = %0 lim f (z)=w,

Then |f(z)-w,|<& whenever 0<|z-2z,|<d,
[f(z)-w|<e  whenever 0<|z-27,|<§,
S =min(8,,4,)
if 0<|z—2]|<0o
[f(@)—w,]-[f(@)-w] <|f(@)—w|+|f(2)—w|<2¢

W —wy| < 2¢

Let

|W —W | is @ nonnegative constant, and @n be chosen arbitrarily small.
Hencel "1 0

w—-w,=0, or w=w,



Ex 2. If f(Z):i (4)

then doek not exist.
lim 7(2) _
show: when z=(x,0) f(z2)=2t10_1
X—10 |
O+1y
h =(0, f(z)= =-1 <
when z=(0,y) f(2) 0=y

since a limit is unique, limit of (4) does not exist.

(2) provides a means of testing whether a given point Wois a limit, it does

not directly provide a method for determining that limit.



Theorems on limits

Thm 1. Suppose that

f(z)=u(xy)+iv(X,y), Z,="X, +iy,
and W, =u, +1v,

Then lim f(z)=w, iff

27,

(%,¥)=>(%0.Y0) ( y) 0 (X,¥)—=>(X:Yo) ( y) 0

pf:” & \u—uo\<§ whenever O<\/(X_Xo)2+(y_y0)2<51

\v—v0\<g whenever O<\/(x—x0)2+(y—yo)2<52

let 6 =min(o,,9,)



since _ _ _
(u+iv) = (uy +ivy)| =|(u—uy ) + (v =Vy)| < Ju—g|+ v =,

\/(x—x0)2+(y—y0)2 =|(x=% ) +i(y = Yo )| =|(x+iy)— (%, +iy, )|

‘(u+iv)—(u0—iv0)‘<§+§:g

and

whenever 0 <|(x+iy)—(%, +iy,)|< &
=
syt |(U+IV)—(Uy—ivy) <& whenever 0<|(x+iy)—(X,+iy,) <&

u—up|<|(u—uy)+i(v=vy)| = |(u+iv)—(u, +iv,)| <&

and [V —Vo| <|(u=up)+i(v=V,)|=|(u+iv)—(us +iv,) <&

(x+iy) = (% +iye)| = (X=X )+ (Y=Y, )

Lu-ul<e and |v-vil<e

whenever 0< \/(x X ) (YY) < O



Thm 2. suppose that
lim f(z)=w, and IlimF(z)=W, (7)

27, 27,

Then lim[f(2)+F(z)]=w, +W,

lim [ f(2)- F (2)] = w, (©)
and 1If W,=0
: f(z) W,
Z—>Zo F(Z) W

pf: utilize Thm 1.
for®). f(z) =u(x, y)+iv(x, y)
F(z)=U(Xy)+1IV(X,y)

Z, =X, +iY,, W, =U, +iv,,

use Thm 1. and (7)

W, =U, +iV,



f(z)F(z)=(uU -wW)+i(vU +uV) have the limits
U U

uU,-vpv, VvU,+U,V,
— WOWO

An immediate consequence of Thm. 1:

limc=c
-7,
limz =z,
-1,
Ty e Zon (n=12,.) by property (9) and math induction.
217,
2
P(z.):ao+alz+azz +...+a,2" (11)
lim P(z) = P(z,)
21,
Aif  lim f(z) =w,,then lim|f (z)|=|w,|
-7, 217,

| f(2)]—|wo| <|f(2) —W,|<&  whenever 0<|z-7z]<6



Limits involving the point at Infinity

It is sometime convenient to include with the complex plane the point at infinity,

00
denoted by  , and to use limits involving it.

Complex plane + infinity = extended complex plane.

complex plane passing thru the equator of a unit sphere.
To each point z in the plane there corresponds exactly one point

P on the surface of the sphere.

'
intersection of the line z-N with the surface.
T
north pole

To each point P on the surface of the sphere, other than the north pole N,
there corresponds exactly one point z in the plane.



By letting the point N of the sphere correspond to the point at infinity, we obtain a
one-to-one correspondence between the points of the sphere and the points of the

extended complex plane.

upper sphere exterior of unit circle
<+—>
1 points on the sphere close to N
|Z| > — «—
E
|

& neighborhood of 0
o limf(z)=o0

217,

= |f(z)|>% whenever 0<|z—z)|<6

1 _ol<s  whenever 0<|z—-2|<6
f(z)
. 1
Iimf(z)=00 iff lim——=0
7151, =7 f(z
Ext. | IZ+3:oo since Iimz—+1:0

z>-1 741 z>-117 +3



o Iimf(z)=w,

Z—>0

< |f(z)-w|<e  whenever \z\>%

= f(l)—w0<g whenever 0<|z-0|<&
Z

imf(z)=w, iff limf()=w,
/

Z—>0 z—0

: (<) +i :
2% 22t g i lim i 'rT32+IZ
2> 7 +1 2> (D) +1 250 147
7




o limf(z)=w

Z—>0

& f(z)|>l whenever |z|>i
E o)

= f(l) >1 whenever —>i
Z & 7
1
= —0l<&  whenever O<\z—0\<5
f(1/2)
. . . 1
limf(z) =00 iff lim =0
Z—>© z—0 f(%)
Ex 3. ; 223—1
lim - = o0
20 7% 4]
. S+l 7478
since lim-< =|im =0

3
z—0 z%_l 250 9 —7



Continuity

A function fis continuous at a point zo if

lim f(z) exists, (1)
f(z,) exists, (2)
lim £ (2) = f(z,) (3) ((3) implies (1)(2))

(|f(z)-f(z)|<e whenever |z-z,|<0)

o if fl’ f2 continuous at zo, then fl 4 f2! ﬁlre f2

also continuous at zo.

f

L if f,(z,) %0
f2

Sois



e A polynomial is continuous in the entire plane because of (11), section 12. p.37

e A composition of continuous function is continuous.

‘g[f(z)]—g[f(zo)]‘<g, whenver |f(z)- f(z,)|<r,
whenver |z-z,|<d&

* If a function f{z) is continuous and non zero at a point zo, then f(z)=0

throughout some neighborhood of that point.
f
when f(Zo)ilﬁt 6_:‘ (Zo)‘

2
|f(Zo)|

1f(2)— f(z,)|<

if there is a point z in the |z —7 | atdwhich f (zihenO

whenever |z—2z,|<&

£ (2] < Lo | f (2,4 contradiction.
0



From Thm 1
a function f of a complex variable is continuous at a point Z, = ()(0, yo)

iff its component functions u and v are continuous there.

Ex. The function

f (z) = cos(x* — y*)cosh 2xy —isin(x* — y?)sinh 2xy
IS continuous everywhere in the complex plane since

(1) oare continuous  (polynomial)

X —y
2 Xy
(if) cos, sin, cosh, sinh are continuous

(ii1) real and imaginary component are continuous

complex function is continuous.




Derivatives

Let f be a function whose domain of deflnltlcgn(c%r)taln a neighborhood of a point
Zo. The derivative of f at zo, written

f '(Zo): lim f(z)— f( o)

Z—>1y /. — ZO

provided this limit exists.

fis said to be differentiable at zo.

————
,,,,,
-

let Az=27-72,

f (2, +42) - f(2)) 2o

Ssselo--

f'(z,) = lim
Az=0 AZ 2y + AZ

let Aw= f(z+Az)- f(2).

f'(z):d—_ IlmA—W
dz Az—0 A7




Ex1. Suppose f(z) = 72 at any point z

2 2
im AW _ jim 8D 7 224 A7) = 2240 =22
Az—0 A7 Az—0 AZ Az—0
since  2Z + AZa polynomial in WAV

f'(2) :d—W:ZZ
dz

EX2. f(z):|z|2
aw  |z+Azf -|2f (z+Az)(E+E)—zE Y
= = =Z+A7+7—
AZ AZ AZ AZ

when AZ —> Othr@Ax,o) on the real axis E = A7

Hence if the limit of AW exists, its value = E + 7

wher\z — 0 thr@O,Aiy) on the imaginary axis.
AZ=—AZ |limit=7 — 7 ifit exists.

A



since limits are unique,

E+Z=E—Z, or z=0Iif %\;Vrstoexist.

observe that LY > Az when 7=0
dw AZ
. —existsonly atZ =0, its value =0

dz

« Example 2 shows that
a function can be differentiable at a certain point but nowhere else in any

neighborhood of that point.

* Re are continuous, partially

2 2 2
2| =x*+y
differentiable at a point.

Im

2
but | ||Zz|ma:y(r)lot be differentiable there.
VA



. — is continuous at each point in the plane since its components are
f(z) |Z| t t each point in the pl t t
continuous at each point.

not necessarily

continuity < derivative exists.

existence of derivative —sontinuity.

[ f(2)~ f (z,)] = lim H2)= T(2) jimz—2,)

—1Z L— 1L, 27
~ '(z,)-0=0
1im f(2) = £(z,)



16. Differentiation Formulas

iC =0 C :complex constant

dz
iz:l
dz

d .
et @]=cf @)

— 7" —nz"* n a positive integer.
dz
dry (2)+F(2) |=f'(2)+F'(2)

dz -

%:f (2)F(2)]= f()F(2)+ f (2)F (2)

when F(z)=0

d {f(z)}_ F(2)f'(z)- f(2)F'(2)

dz| F(z) | [F(2)]

(4)



pf - (4)

f(z+Az2)F(z+Az)- 1 (2)F(2)
=f(2)[F(z+Az2)-F(2)]+H f(z+Az)- f(2)]F (z + Az)

f(z+Az)F(z+Az)- f(2)F(2) _t(2) F(z+Az)-F(z) \ f(z+Az)-f(2)

F(z+Az)
AZ AZ AZ

as Az —>0 %[fF]: f(2)F'(2)+ f'(2)F(z+ A2)
— f(z)F'(z)+ f '(z)F(z) (F continuous at 2)



f has a derivative at 2o
g has a derivative at f{zo)

F(z)=g[f(z)] has a derivative at zo

T F) =g TH @)
dw  dW dw
dz dw dz

pf of (6)

choose a zo at which f(z0) exists.
let wo = f(z0) and assume g’(wo) exists.

Then, there is

|W _ Wo| ngWo such that
we can define a function , with and
d(w,) =0
W)—0g(Ww
D(w) = gw) —g(Wo) _ g'(w,) when w=w,

0

lim ®(w) =0, Hence (s continuous at wo

W—W,

(7)



(M= gw)—g(W,) =[g'(Wp) + PW)](W—wp)  (w—wy|<e)

valid even when W = W,

since f '(zO )exists and therefore f is continuous at zo, then we can
have flz) liesin  \w—wy|<e of w, if |z—z]|<&5

substitute w by £(z) in (9) when z in ‘z _ Zo‘ <5
(9) becomes
PHEIHBN_ or1 ot @n-2= %) qo)
(0<|z—-2,|< )

since f is continuous at zo, d is continuous at Wo = f (Zo)

(D[ f (Z)]is continuous at zo, and since (D(Wo) =0
lim®[ f(z)]=0

21,

so(10)becomes  F(z,) = g'[ £ (2,)] (2 & 22,

9)



Cauchy-Riemann Equations

Suppose that  f '(z,) = iimo f(z, + AAZ) — f(z,)
7> 7

writing  Zy =X, +1y,  AZ=AX+IAy

exists.

Then by Thm. 1

f(z,+Az)—- f(zo)] (3)

Re -f (ZO)- = (Ax,AIyI)rE(o,O) ! AZ
v f(z, +Az)- f(z,)
Im[f'(z)]=  lim im[ > 1

where
f(2+42) = F(2) _ U0 +AX Yo +AY) U, Yo) g
AZ AX+ 1Ay
V(X + AX, Yo + AY) — V(X Yo)
AX+1AY




Let (Ax,Aygnd to (0,0) horizontally through (AXe0) Ay =0
(> V1 _ fim Y +AX, Yo) —U(Xy, Yo)
Re[ f '(z,)] = lim -
' I I V(X0+AX’ yo)_V(Xo’yo)
Im[f (z,)]=lim -
= 1(20) = U (X0, Vo) 1V, (%0, Yo) (6)
Let (Ax,Aybend to (0,0) vertically thru (0.Ay) Axhel)
f '(Zo) _ (U(XO’ yO +Ay) _U(XO’ yO) + i[V(XO’ yO +Ay) _V(XO’ yo)])
IAY IAY
:Vy(XO’yO)_iuy(XO’yO) (7)
=—lu, +Vv,
(6)=(7)
UX(XO, yo) =\ (Xo’ yo) (8)

uy(XO’ yo) ==V, (XO’ yo)

Cauchy-Riemann Equations.



Thm:suppose  f (z) =u(x,y)+iv(X,Y)
f -(ngists at a point Z0 — Xo + iyo
) :
Then U, U, V,,V, exist at (Xo’ yo)

andu, =v,, U, =-v,; also f'(z)=u, +Iv,

Exl.  f(2)=z"=x" -y +i2xy

u, =2X v, =2y
u, =-2y V, =2X
u, =v,, u,=-Vv,

f'(z)=2x+12y =2(X+1y) =22
Cauchy-Riemann equations are Necessary conditions for the existence of

the derivative of a function fat zo.

I:>Can be used to locate points at which fdoes not have a derivative.



2. f(2) =z,
u(x,y)=x>+vy> v(x,y)=0
u,=2x v, =0 U, #Vys  TAZ) goes not exist
u =2y v, =0

. at any nonzero point.

The above Thm does not ensure the existence of f’(zo)
(say)



Sufficient Conditions For Differentiability
f'(z,) exist —u =v, u =-v,

but not . \
e
Thm.
Let f (z) — u(x, y) 1 iv(x, y) be defined throughout some  n€ighborhood of
a point Zy =X, + iy0

suppose u, uy | VX,\fi)(iSt everywhere in the neighborhood and

are at (Xo, yo)

Then,if U, = Vy, Uy ==V, at (Xm yo)

= f'(z,) exists.



pf:let  Az=Ax+iAy, where O0<|Az|<¢
Aw = f(z, +Az) - f(z,) )
Thus AW=AU+IAV < Uu(z,+Az)—-u(z,)+I1[v(z, +Az)—-V(z,)]

where

AU = U(X, + AX, Y, +Ay) —U(X,, Y,)
AV = V(X, + AX, Y, + AY) = V(X,, ¥)

) Now in view of the continuity of the first-order partial derivatives of u and v at the

point (%01 Yo)
AU = U(Xy, Yo) + Uy (Xo5 Yo )AX+U, (%o, Yo)AY +U,, (X5, Yo )AXAY
AX*
+uxx(XO’ yo)?
Ay?
+uyy(XO’ yO 7
_U(Xo’ yo) +...

= U (X, Yo )AX+ Uy (X Yo )AY #84/(AX)? + (Ay)?



AV =V, (Xg5 Yo)AX+V, (X, Yo )AY + &, \/(Ax)z +(Ay)?
&,&, > 0,85 (AX,Ay) — (0,0)

AW = AU + iAV «— whereg; and & tend to 0 as(Ax,Ay) —>(0,0) in the
-plane. Az
= above (3)p
assuming that the Cauchy-Riemann equations are satisfied at (Xov,vyoc)an replace
uy by _Vx’ and Vy IT'H?), qﬁl):j divide thru by AZ
toget Aw _ _ (AX)" +(Ay)’
E=UX(XO,y0)+IVX(XO,yO)+(81+I82)\/ A7 (4)

but  \J(ax)* +(Ay) =|az

J(ax) +(ay)*|

AZ

SO
also g, + iggnds to 0, as (AX,Ay) —> (0,0)
The last term in(4) tends to 0 as A7z 50

. The limit of % exists, and f'(z,) =u, (X, Y,) +1V, (X, Yy)-
Z



Ex 1.

Ex 2.

f(z)=e"(cosy+isiny)
u(x,y)=e"cosy
v(X,y)=e"siny

— — _ everywhere, and continuous.
U, = Vy, Uy ==V, y

— f '(z) exists everywhere, and

f'(z)=u +iv, =e”(cosy+isiny)

f(z)=|2|
u(x,y)=x*+y? u =2x U, =2y
v(x,y)=0 v,=0 v, =0

has a derivative at z=0.
f'(0)=0+i0

can not have derivative at any nonzero point.



Polar Coordinates
X=1rcoséd y=rsiné
z=Xx+iy=re’ (z#0)
Suppose that UX’Uy’VX"d>§,ist everywhere in some neighborhood of a given non-

zero point zo and are continuous at that point.

u.,u,,Vv., VHaIso have these properties, and ( by chain rule )

ou ou ax ou oy
or  ox or 8y or

ou  ou oOx au oy
00  ox 86’ oy 06
u, =u,cosé+u, sing (2)

u, =-u,rsiné+u rcosé

Similarly,
V, =V, Cc0sd+V, singd (3)

Vy ==V, rsind+v,rcos@



If uX:Vy! uy:—V

X

V, =-U,coséd+u,sing

V, =u,rsing+u,rcosé

1
from (2) (5), u =-Vv,

Thm. p53...

at z,

(6)

()



f'(z,)=u, +1v,

2
u =u,cosé+u,sing V, =V, cos@+V, sing
u, cosé =u, cos’ @ +u, sin g cosd =—u,cosf+u,sing

v, sin@ =—u, cos@sin O +u, sin* &

.U, cos@+v, sinfd =u,

u =V, coso—v,sing V, =V, C0s&+V, SIng

u,sin@ =v, cosdsin@—v,sin?9  cosev, =V, cos’ & +V,sindcosd

V.COs@—U.SING =V,

. T'(z,) =u, cos@+v,sin@+i(v, cosd—u,sino)
=(cos@—isinB)(u_+iv,)
=e (U, +iv,) (7)



Ex : Consider f(Z)z—z—m
Z re
1 1.
u(r,d) =-coséd v(r,0) =—=sing
r r
u, =—izcosé’ v, =i25in6?
r r
ugz—lsine vez—lcose
r r
1 1 .
=>u =-v,, —U,=-V, at any non-zero point 7
r r
L f exists
o L =
f'=e" (——cos0+—sinb)
I I
1 -0\ ,5—160 1 —i26 1
=—(er)e  =—me T =7
I I Z

1 1



