DERIVATIVE OF
ANALYTIC FUNCTION



Derivatives of Analytic Functions z=x+iy

Let f (z) be analytic around z, then
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Analytic functions can be defined by Taylor series of the
same coefficients as their real counterparts.
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Derivatives of Functions w(t)

 Consider derivatives of complex-valued functions w of
real variable t

w(t) =u(t) +iv(?)

where the function u and v are real-valued functions of t.
The derivative

Ww(o), ordiw(t)
[
of the function w(t) at a point t is defined as

w'(t)=u'(z) +iv'(¢)



Derivatives of Functions w(t)

* Properties
For any complex constant z,=x,+1y,,
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Derivatives of Functions w(t)

* Properties

iezot =z,e™
dt
where z,=X,+1y,. We write
S0 Sog il v(t)
g™ =gt =X cog y i sin y t
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Similar rules from calculus and some simple algebra then lead us to the expression

e’ = (e™ cos y t)'+i(e*" sin y,t)’
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Derivatives of Functions w(t)

* Example

Suppose that the real function f(t) Is continuous on an
interval a< t <b, 1f £’(t) exists when a<t<b, the mean value
theorem for derivatives tells us that there 1s a number C in
the 1nterval a<C<b such that
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Derivatives of Functions w(t)

« Example (Cont’)

The mean value theorem no longer applies for some
complex functions. For instance, the function
w(t) =e"
on the interval 0 <t <2x.
Please note that .
w0 Hie" =1

And this means that the derivative w’(t) 1s never zero, while

w(27)—w(0) =0 (:> W'(g) # W(Z;;:EV(O) =0,V¢ e0,27)

Note: not every rules from calculus holds for complex functions
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