Harmonic

 Function
Harmonic Functions

- A Harmonic Function

A real-valued function H of two real variables x and y is said to be harmonic in a given domain of the xy plane if, throughout that domain, it has continuous partial derivatives of the first and second order and satisfies the partial differential equation

$$
H_{x x}(x, y)+H_{y y}(x, y)=0
$$

Known as Laplace's equation.

Harmonic Functions

- Theorem 1

If a function $\mathrm{f}(\mathrm{z})=\mathrm{u}(\mathrm{x}, \mathrm{y})+\mathrm{iv}(\mathrm{x}, \mathrm{y})$ is analytic in a domain D , then its component functions u and v are harmonic in D .
Proof: $f(z)=u(x, y)+i v(x, y)$ is analytic in D

$$
\square \quad u_{x}=v_{0} \& u_{y}=-v_{x}
$$

Differentiating both sizes of these equations with respect to x and y respectively, we have

$$
\begin{aligned}
& u_{x}=v_{x x} \& u_{y}=-v_{x x} \quad \text { continuity }, \quad u_{x}=v_{x y} \& u_{x y}=-v_{x x} \\
& u_{x y}=v_{y y} \& u_{y y}=\nu_{x y} \quad \downarrow \quad u_{x y}=v_{y y} \& u_{y y}=v_{x y} \\
& u_{x x}+u_{y y}=0 \& v_{x x}+v_{y y}=0
\end{aligned}
$$

Theorem In Sec. 52
a function is analytic at a point, then its real and imaginary components have continuous partial derivatives of all order at that point.

Harmonic Functions

- Example 3

The function $\mathrm{f}(\mathrm{z})=\mathrm{i} / \mathrm{z}^{2}$ is analytic whenever $\mathrm{z} \neq 0$ and since

$$
\frac{z^{2}}{} \quad \underline{ } \quad z^{2}\left(z(z)^{2}-2 \quad 2 x y+1\left(x^{2}-y^{2}\right)\right.
$$

The two functions
are harmonic throughout any domain in the xy plane that does not contain the origin.

Harmonic Functions

- Harmonic conjugate

If $t w o$ given function u and v are harmonic in a domain D and their first-order partial derivatives satisfy the CauchyRiemann equation throughout D, then v is said to be a harmonic conjugate of u.

Is the definition symmetry for u and v ?
Cauchy-Riemann equation

$$
u_{x}=v^{2} \& u_{y}--v_{x}
$$

If u is a harmonic conjugate of v, then

$$
u_{x}=-v_{y} \boldsymbol{\&} u_{y}-v_{x}
$$

Harmonic Functions

- Theorem 2

A function $\mathrm{f}(\mathrm{z})=\mathrm{u}(\mathrm{x}, \mathrm{y})+\mathrm{iv}(\mathrm{x}, \mathrm{y})$ is analytic in a domain D if and only if v is a harmonic conjugate of u.

- Example 4

The function $f(z)=z^{2}$ is entire function, and its real and imaginary components are $(x, y)=x^{2}-y^{2} \& v(x, y)=2 x y$
Based on the Theorem 2, v is a harmonic conjugate of u throughout the plane. However, u is not the harmonic conjugate of v , since $(z)=2 x y+i\left(x^{2}-y^{2}\right) \quad$ is not an analytic function.

Harmonic Functions

- Example 5

Obtain a harmonic conjugate of a given function.

$$
u(x, y)=y-3 x^{2} y
$$

Suppose that v is the harmonic conjugate of the given function Then $\quad u_{x}=v_{y} \& u_{y}=v_{x}$

$$
\begin{aligned}
& u_{x}=6 x y=v_{,}, \longrightarrow r=3 x y^{2}+\phi(x) \\
& u^{2}=3 y^{2}-3 x^{2}-v_{r} \square \longrightarrow 3 y^{2}-3 x^{2}-\left(-3 y^{2}+\phi^{\prime}(x)\right) \\
& \phi^{\prime}(x)=3 x^{2} \Rightarrow \phi(x)=x^{3}+C \\
& v=-3 x y^{2}+x^{3}+C
\end{aligned}
$$

