Introduction

Main Work: *Théorie analytique de la chaleur* (The Analytic Theory of Heat)

- Any function of a variable, whether continuous or discontinuous, can be expanded in a series of sines of multiples of the variable (Incorrect)
- The concept of dimensional homogeneity in equations
- Proposal of his partial differential equation for conductive diffusion of heat

Jean Baptiste Joseph Fourier (Mar21st 1768 –May16th 1830) French mathematician, physicist

Discovery of the "greenhouse effect"

Fourier Transform

Transition from Fourier integral to Fourier transform $f(x) = \int_0^\infty [a(\omega)\cos\omega x + b(\omega)\sin\omega x]d\omega.$ (1a) Where $a(\omega) = \frac{1}{\pi} \int_{-\infty}^\infty f(x)\cos\omega x \, dx,$ (1b) $b(\omega) = \frac{1}{\pi} \int_{-\infty}^\infty f(x)\sin\omega x \, dx.$

Put (ib) into (ia):

$$f(x) = \frac{1}{\pi} \int_0^\infty \{ \int_{-\infty}^\infty f(\xi) [\cos\omega\xi\cos\omega x + \sin\omega\xi\sin\omega x] d\xi \} d\omega$$

$$= \frac{1}{\pi} \int_0^\infty \int_{-\infty}^\infty f(\xi) \cos\omega(\xi - x) d\xi d$$

Since cos(A-B)=cosAcosB+sinAsinB and introduce complex exponentials:

$$f(x) = \frac{1}{\pi} \int_0^\infty \int_{-\infty}^\infty f(\xi) \frac{e^{i\omega(\xi-x)} + e^{-i\omega(\xi-x)}}{2} d\xi d\omega$$
$$= \frac{1}{2\pi} \int_0^\infty \int_{-\infty}^\infty f(\xi) e^{i\omega(\xi-x)} d\xi d\omega + \frac{1}{2\pi} \int_0^\infty \int_{-\infty}^\infty f(\xi) e^{-i\omega(\xi-x)} d\xi d\omega$$

To combine the two terms on the right-hand side, let us change the dummy integration variable from ω to – ω :

$$f(x) = \frac{1}{2\pi} \int_0^{-\infty} \int_{-\infty}^{\infty} f(\xi) e^{-i\omega(\xi - x)} d\xi(-d\omega) + \frac{1}{2\pi} \int_0^{\infty} \int_{-\infty}^{\infty} f(\xi) e^{-i\omega(\xi - x)} d\xi d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} [\int_{-\infty}^{\infty} f(\xi) e^{-i\omega\xi} d\xi] e^{i\omega x} d\omega$$

Thus,

$$f(x) = a \int_{-\infty}^{\infty} c(\omega) e^{i\omega x} d\omega c(\omega) = b \int_{-\infty}^{\infty} f(\xi) e^{-i\omega\xi} d\xi ab = 1/2\pi$$

There is no longer a need to distinguish x and ξ , so:

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} c(\omega) e^{i\omega x} d\omega$$
$$c(\omega) = \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx.$$

Fourier transform

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} c(\omega) e^{i\omega x} d\omega, \quad (1)$$
$$c(\omega) = \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx. \quad (2)$$

They can be a transform pair: (2) defines the **Fourier transform**, c(w), of the given function f(x), and (1) is called the **inversion formula**.

 $F\{f(x)\} = \hat{f}(\omega) = \int_{-\infty}^{\infty} c(\omega)e^{-i\omega x} dx,$ $F^{-1}\{\hat{f}(\omega)\} = f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega)e^{i\omega x} d\omega.$

Example:

Derive the result
$$F\left\{e^{-a|x|}\right\} = \frac{2a}{\omega^2 + a^2}$$
 (a>0)

Solution:

According to the definition $F\{f(x)\} = \hat{f}(\omega) = \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx$

Then

$$F\left\{e^{-a|x|}\right\} = \int_{-\infty}^{\infty} e^{-a|x|} e^{-i\omega x} dx = \int_{-\infty}^{0} e^{ax} e^{-i\omega x} dx + \int_{0}^{\infty} e^{-ax} e^{-i\omega x} dx = \frac{1}{a - i\omega} + \frac{1}{a + i\omega} = \frac{2a}{a + \omega^2}$$

Properties and applications

•.Linearity of the transform and its inverse.

 $F{af+bg}=aF{f}+bF{g}$ $F^{-1}{a\hat{f}+b\hat{g}}=aF^{-1}{\hat{f}}+bF^{-1}{\hat{g}}$

2. Transform of *n*th derivative.

 $F\{f^{(n)}(x)\} = (i\omega)^n \hat{f}(\omega).$

3.Fourier convolution.

$$(f * g)(\mathbf{x}) = \int_{-\infty}^{\infty} f(x - \xi) g(\xi) d\xi.$$

Then the Fourier convolution theorem:

 $F{f * g} = \hat{f}(\omega)\hat{g}(\omega) \text{ and } F^{-1}{\hat{f}\hat{g}} = f^*g$

4. Translation formulas, x-shift and ω -shift

$$F\{f(x-a)\} = e^{-ia\omega}\hat{f}(\omega)$$
$$F^{-1}\{\hat{f}(\omega-a)\} = e^{ia\omega}f(x)$$

Example:

Solve the wave equation $c^2 u_{xx} = u_{tt}$; u(x,0) = f(x) and $u_t(x,0) = g(x)$ Take the Fourier Transform of both equations. The initial condition gives $\hat{u}(\omega,0) = \hat{f}(\omega)$ $\hat{u}_{t}(\omega,0) = \frac{\partial}{\partial t} \hat{u}(x,t) \Big|_{t=0} = \hat{g}(\omega)$ And the PDE gives $c^{2}(-\omega^{2} \hat{u}(\omega,t)) = \frac{\partial^{2}}{\partial t^{2}} \hat{u}(\omega,t)$ Which is basically an ODE in t, we can write it as $\frac{\partial^2}{\partial t^2} \hat{u}(\omega, t) + c^2 \omega^2 \hat{u}(\omega, t) = 0$ Which has the solution, and derivative $u(\omega, t) = A(\omega) \cos c\omega t + B(\omega) \sin c\omega t$ $\frac{\partial}{\partial t}\hat{u}(\omega,t) = -c\omega A(\omega)\sin c\omega t + c\omega B(\omega)\cos c\omega t$

So the first initial condition gives $A(\omega) = f(\omega)$ and the second gives $c\omega B(\omega) = g(\omega)$ and make the solution

 $\hat{u}(\omega,t) = \hat{f}(\omega)\cos c\omega t + \frac{\hat{g}(\omega)}{\omega}\frac{\sin c\omega t}{c}$

Let's first look at $\hat{f}(\omega)\cos c\omega t = \hat{f}(\omega)(\frac{e^{i\omega ct} + e^{-i\omega t}}{2}) = \frac{1}{2}(\hat{f}(\omega)e^{ic\omega t} + \hat{f}(\omega)e^{-i\omega ct})$

Then

$$F^{-1}[\hat{f}(\omega)\cos c\omega t] = \frac{1}{2}(f(x+ct)+f(x-ct))$$

The second piece

$$\frac{\hat{g}(\omega)}{\omega} \frac{\sin c\omega t}{c} = \frac{\hat{g}(\omega)}{i\omega} \frac{\sin c\omega t}{-ic}$$

And now the first factor looks like an integral, as a derivative with respect to x would cancel the iw in bottom. Define:

 $h(x) = \int_{s=0}^{x} g(s) ds$

So

By fundamental theorem of calculus

h'(x) = g(x) $\hat{g}(\omega) = i\omega \hat{h}(\omega)$

$$\frac{\stackrel{\wedge}{g(\omega)}}{\omega}\frac{\sin c\omega t}{c} = \stackrel{\wedge}{h(\omega)}\left(\frac{e^{ic\omega t} - e^{-ic\omega t}}{2i}\right)\frac{1}{-ic} = \frac{1}{2c}\left(\stackrel{\wedge}{h(\omega)}e^{ic\omega t} - \stackrel{\wedge}{h(\omega)}e^{-ic\omega t}\right)$$
$$F^{-1}\left[\frac{1}{\omega c}\stackrel{\wedge}{g(\omega)}\sin c\omega t\right] = \frac{1}{2c}\left(h(x+ct) - h(x-ct)\right) = \frac{1}{2c}\left(\int_{0}^{x+ct}g(s)ds - \int_{0}^{x-ct}g(s)ds\right) = \frac{1}{2c}\int_{x-ct}^{x+ct}g(s)ds$$

Putting both piece together we get the solution

$$u(x,t) = \frac{1}{2}(f(x-ct) + f(x+ct)) + \frac{1}{2c}\int_{x-ct}^{x+ct} g(s)ds$$

Cosine and sine transforms

1. Fourier cosine transform

 $F_{C}\{f(x)\} = \hat{f}_{C}(\omega) = \int_{0}^{\infty} f(x) \cos \omega x dx,$ And its inverse: $F_{C}^{-1}\{\hat{f}_{C}(\omega)\} = f(x) = \frac{2}{\pi} \int_{0}^{\infty} \hat{f}_{C}(\omega) \cos \omega x d\omega.$

a.Fourier sine transform

$$F_S{f(x)} = \hat{f}_S(\omega) = \int_0^\infty f(x) \sin \omega x dx,$$

And its inverse:

$$F_S^{-1}\{\hat{f}_S(\omega)\} = f(x) = \frac{2}{\pi} \int_0^\infty \hat{f}_S(\omega) \sin \omega x \, d\omega$$

Properties: $F_{C}\{f'(x)\} = \omega \hat{f}_{S}(\omega) - f(0)$ $F_{S}\{f'(x)\} = -\omega \hat{f}_{C}(\omega).$ $F_{C}\{f''(x)\} = -\omega^{2} \hat{f}_{C}(\omega) - f'(0).$ $F_{S}\{f''(x)\} = -\omega^{2} \hat{f}_{S}(\omega) + \omega f(0)$

Example:

Solve heat transfer equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

B.C: (1) u(0,t)=0(2)u(x,0)=P(x) $1 \le x \le 2$ or P(x)=1,

Solution with Fourier Sine Transform: $F_{a}\{u''-u'\}=F_{a}\{0\}$ $F_{a}\{u''\} = F_{a}\{u'\}$ $-\omega^2 \hat{f}_s + \omega f_0 = -\omega \hat{f}_c(\omega) = \frac{\partial f_s}{\partial t}$ According to the B.C, we can get $f_0 = 0 \qquad -\omega^2 \hat{f}_s(\omega, t) = \frac{\partial f_s(\omega, t)}{\partial t} \qquad \hat{f}_s(\omega, t) = \hat{f}_s(\omega, 0) \exp(-\omega^2 t)$

Then

 $\hat{f}_s(\omega,0) = (2/\pi) \int_0^\infty u(x,0) \sin(\omega x) dx = (2/\pi) \int_0^\infty P(x) \sin(\omega x) dx = (2/\omega\pi) [\cos \omega - \cos 2\omega]$ $f_{s}(\omega,t) = f_{s}(\omega,0)\exp(-\omega^{2}t) = (2/\omega\pi)[\cos\omega - \cos 2\omega]\exp(-\omega^{2}t)$ Inverse $\hat{f}_{s}(\omega,t)$ Gives the complete solution

 $u(x,t) = \int_{0}^{\infty} \hat{f}_{s}(\omega,t)\sin(\omega t)d\omega = \int_{0}^{\infty} (2/\omega\pi)(\cos(\omega) - \cos(2\omega))\exp(-\omega^{2}t)\sin(\omega x)d\omega$

Fourier Transform of the Unit-Step Function

Since

 $u(t) = \int \delta(\tau) d\tau$

using the integration property, it is

 $u(t) = \int \delta(\tau) d\tau \leftrightarrow \frac{1}{i\omega} + \pi \delta(\omega)$

Properties of the Fourier Transform -Summary

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM	
Property	Transform Pair/Property
Linearity Right or left shift in time	$ax(t) + bv(t) \leftrightarrow aX(\omega) + bV(\omega)$ $x(t - c) \leftrightarrow X(\omega)e^{-j\omega c}$
Time scaling	$x(at) \leftrightarrow \frac{1}{a} X\left(\frac{\omega}{a}\right) a > 0$
Time reversal	$x(-t) \leftrightarrow X(-\omega) = \overline{X(\omega)}$
Multiplication by a power of t	$t^n x(t) \leftrightarrow j^n \frac{d^n}{d\omega^n} X(\omega) n = 1, 2, \dots$
Multiplication by a complex exponential	$x(t)e^{j\omega_0 t} \leftrightarrow X(\omega - \omega_0) \omega_0 \text{ real}$
Multiplication by sin $\omega_0 t$	$x(t)\sin\omega_0t \leftrightarrow \frac{j}{2}[X(\omega+\omega_0)-X(\omega-\omega_0)]$
Multiplication by $\cos \omega_0 t$	$x(t) \cos \omega_0 t \leftrightarrow \frac{1}{2} [X(\omega + \omega_0) + X(\omega - \omega_0)]$
Differentiation in the time domain	$\frac{d^n}{dt^n}x(t)\leftrightarrow (j\omega)^nX(\omega) n=1,2,\ldots$
Integration	$\int_{-\infty}^{t} x(\lambda) d\lambda \leftrightarrow \frac{1}{j\omega} X(\omega) + \pi X(0) \delta(\omega)$
Convolution in the time domain	$x(t) * v(t) \leftrightarrow X(\omega)V(\omega)$
Multiplication in the time domain	$x(t)v(t) \leftrightarrow \frac{1}{2\pi} X(\omega) * V(\omega)$
Parseval's theorem	$\int_{-\infty}^{\infty} x(t)v(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{X(\omega)} V(\omega) d\omega$
Special case of Parseval's theorem	$\int_{-\infty}^{\infty} x^2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^2 d\omega$
Duality	$\begin{array}{c} J_{-\infty} & ZJt \ J_{-\infty} \\ X(t) \leftrightarrow 2\pi x(-\omega) \end{array}$

Example :

The property of Fourier transform of derivatives can be used for solution of differential equations: $y' - 4y = H(t)e^{-4t}$

y - 4y - H(t)c $H(t) = \begin{cases} 0 & t < 0 \\ 1 & t \ge 0 \end{cases}$

 $F\{y'\} - 4F\{y\} = F\{H(t)e^{-4t}\} = \frac{1}{4+iw}$

Setting $F{y(t)}=Y(w)$, we have

$$iwY(w) - 4Y(w) = \frac{1}{4 + iw}$$

Example :

Then

$$Y(w) = \frac{1}{(4+iw)(-4+iw)} = -\frac{1}{16+w^2}$$

Therefore

$$y(w) = F^{-1}{Y(w)} = -\frac{1}{8}e^{-4|t|}$$