The z-Transform

and its Applications

z-Transform

- The z-transform is the most general concept for the transformation of discrete-time series.
- The Laplace transform is the more general concept for the transformation of continuous time processes.
- For example, the Laplace transform allows you to transform a differential equation, and its corresponding initial and boundary value problems, into a space in which the equation can be solved by ordinary algebra.
- The switching of spaces to transform calculus problems into algebraic operations on transforms is called operational calculus. The Laplace and z transforms are the most important methods for this purpose.

The Transforms

The Laplace transform of a function f(t):

$$F(s) = \int_0^\infty f(t)e^{-st}dt$$

The one-sided z-transform of a function x(n):

$$X(z) = \sum_{n=0}^{\infty} x(n)z^{-n}$$

The two-sided z-transform of a function x(n):

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

Relationship to Fourier Transform

Note that expressing the complex variable z in polar form reveals the relationship to the Fourier transform:

$$X(re^{i\omega}) = \sum_{n=-\infty}^{\infty} x(n)(re^{i\omega})^{-n}$$
, or

$$X(re^{i\omega}) = \sum_{n=-\infty}^{\infty} x(n)r^{-n}e^{-i\omega n}$$
, and if $r = 1$,

$$X(e^{i\omega}) = X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-i\omega n}$$

which is the Fourier transform of x(n).

Region of Convergence

The z-transform of x(n) can be viewed as the Fourier transform of x(n) multiplied by an exponential sequence r^n , and the z-transform may converge even when the Fourier transform does not.

By redefining convergence, it is possible that the Fourier transform may converge when the z-transform does not.

For the Fourier transform to converge, the sequence must have finite energy, or:

$$\sum_{n=-\infty}^{\infty} |x(n)r^{-n}| < \infty$$

Convergence, continued

The power series for the z-transform is called a Laurent series: $X(z) = \sum_{n=0}^{\infty} x(n)z^{-n}$

The Laurent series, and therefore the z-transform, represents an analytic function at every point inside the region of convergence, and therefore the z-transform and all its derivatives must be continuous functions of z inside the region of convergence.

 $n=-\infty$

In general, the Laurent series will converge in an annular region of the z-plane.

Some Special Functions

First we introduce the Dirac delta function (or unit sample function): $(0, t \neq 0)$

sample function): $\delta(n) = \begin{cases} 0, & n \neq 0 \\ 1, & n = 0 \end{cases} \text{ or } \delta(t) = \begin{cases} 0, & t \neq 0 \\ 1, & t = 0 \end{cases}$

This allows an arbitrary sequence x(n) or continuous-time function f(t) to be expressed as:

$$x(n) = \sum_{k=-\infty}^{\infty} x(k)\delta(n-k)$$

$$f(t) = \int_{-\infty}^{\infty} f(x) \delta(x - t) dt$$

Convolution, Unit Step

These are referred to as discrete-time or continuous-time convolution, and are denoted by: $x(n) = x(n) * \delta(n)$

$$f(t) = f(t) * \delta(t)$$

We also introduce the unit step function:

$$u(n) = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$$
 or $u(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}$

Note also:

$$u(n) = \sum_{k=-\infty}^{\infty} \delta(k)$$

Poles and Zeros

- When X(z) is a rational function, i.e., a ration of polynomials in z, then:
- 1. The roots of the numerator polynomial are referred to as the zeros of X(z), and
- The roots of the denominator polynomial are referred to as the poles of X(z).
 Note that no poles of X(z) can occur within the region of convergence since the z-transform does not converge at a pole.

Furthermore, the region of convergence is bounded by poles.

Example

$$x(n) = a^n u(n)$$

The z-transform is given by:

$$X(z) = \sum_{n=-\infty}^{\infty} a^n u(n) z^{-n} = \sum_{n=0}^{\infty} (az^{-1})^n$$

Which converges to:

$$X(z) = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}$$
 for $|z| > |a|$

Clearly, X(z) has a zero at z = 0 and a pole at z = a.

Convergence of Finite Sequences

Suppose that only a finite number of sequence values are nonzero, so that: n_2

$$X(z) = \sum_{n=n_1}^{n_2} x(n)z^{-n}$$

Where n_1 and n_2 are finite integers. Convergence requires

$$|x(n)| < \infty$$
 for $n_1 \le n \le n_2$.

So that finite-length sequences have a region of convergence that is at least $0 < |z| < \infty$, and may include either z = 0 or $z = \infty$.

Inverse z-Transform

The inverse z-transform can be derived by using Cauchy's integral theorem. Start with the z-transform

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

Multiply both sides by z^{k-1} and integrate with a contour integral for which the contour of integration encloses the origin and lies entirely within the region of convergence of X(z):

$$\frac{1}{2\pi i} \oint_C X(z) z^{k-1} dz = \frac{1}{2\pi i} \oint_C \sum_{n=-\infty}^{\infty} x(n) z^{-n+k-1} dz$$

$$=\sum_{n=-\infty}^{\infty}x(n)\frac{1}{2\pi i}\oint_{C}z^{-n+k-1}dz$$

$$\frac{1}{2\pi i} \oint_C X(z) z^{k-1} dz = x(n) \text{ is the inverse } z \text{ - transform.}$$

Properties

- z-transforms are linear:
- The transform of a shifted sequence:

$$\mathbf{Z}\left[ax(n)+by(n)\right]=aX(z)+bY(z)$$

Multiplication:

$$\mathbf{Z}\left[x(n+n_0)\right]=z^{n_0}X(z)$$

But multiplication will affect the region of convergence and all the pole-zero locations will be scaled by a factor of a. $\mathbf{Z} \begin{bmatrix} a & X(n) \\ a & X(n) \end{bmatrix} = \mathbf{Z} \begin{bmatrix} a & Z \\ a & Z \end{bmatrix}$

Convolution of Sequences

$$w(n) = \sum_{k=-\infty}^{\infty} x(k)y(n-k)$$

Then

$$W(z) = \sum_{n=-\infty}^{\infty} \left[\sum_{k=-\infty}^{\infty} x(k) y(n-k) \right] z^{-n}$$
$$= \sum_{k=-\infty}^{\infty} x(k) \sum_{n=-\infty}^{\infty} y(n-k) z^{-n}$$

let m = n - k

$$W(z) = \sum_{k=-\infty}^{\infty} x(k) \left[\sum_{m=-\infty}^{\infty} y(m) z^{-m} \right] z^{-k}$$

W(z) = X(z)Y(z) for values of z inside the regions of convergence of both.