Kurtosis

Introduction

The usual kurtosis measure is

$$\beta_2(F) = \frac{\mu_4(F)}{\mu_2^2(F)}$$

where:

$$\mu_k(F) = E_F(X - E_F(x))^k$$

with $X \sim F(.)$.

What is kurtosis?

 β_2 does not sort the distributions based on the height

What is kurtosis?

We compute β_2 for some distributions, Uniform, Normal, Logistic, Laplace, and Cauchy for the above distributions the kurtosis Measures, β_2 , are 1.8, 3, 4.2, 6, and ∞ respectively. What is kurtosis?

As the height of distributions increases, the order of distributions will be Logistic, Cauchy, Normal, Laplace, and Uniform respectively.

Disadvantages of β_2

- 1- It's infinite for heavy tail distributions.
- 2- It doesn't work well for some distributions such as Ali's scale contaminated normal distributions.

$$F_k(x) = (1 - \frac{1}{k^2 - 1})\Phi(x) + \frac{1}{k^2 - 1}\Phi(\frac{x}{k}), \quad k = 2, 3, \dots$$

where $\Phi(x)$ is the standard normal distribution function.

$$\beta_2 = 3(k^2+1)/4 \rightarrow \infty$$

when $k \to \infty$

But this sequence converges in distribution to the standard normal distribution as $k \to \infty$.

3- It can be misleading as a departure from normality.

 $\beta_2 = 3$ is not a sufficient condition for normality.

A Modified Measure of Kurtosis

$$\beta_p^q(F) = \frac{E_F[(X - E_F(X))I_{(p,q)}(X)]^4}{E_F^2[(X - E_F(X))^2I_{(p,q)}(X)]}$$

Where p and q are quantile of order p and q, respectively with $X \sim F(.)$.

Properties of β_p^q

P.1.
$$\lim_{p\to 0} \beta_{F^{-1}(p)}^{F^{-1}(1-p)} = \beta_2$$
 If $f(x) > 0$ for all x .

P.2.
$$\lim_{p \to \frac{1}{2}} \beta_{F^{-1}(p)}^{F^{-1}(1-p)} = 0,$$

P.3.
$$\beta_a^b(F_k) = \beta_a^b(\Phi(x))$$
 $k \to \infty$

Proof:

since
$$\beta_a^b(F_k(x)) = \frac{\left(1 - \frac{1}{k^2 - 1}\right) \int_a^b x^4 \phi(x) \, dx + A(k)}{\left(\left(1 - \frac{1}{k^2 - 1}\right) \int_a^b x^2 \phi(x) \, dx + B(k)\right)^2}$$

where A(k) =
$$\frac{k^5}{k(k^2-1)} \int_{\frac{b}{k}}^{\frac{a}{k}} x^4 \phi(x) dx$$
 And B(k) = $\frac{k^3}{k(k^2-1)} \int_{\frac{b}{k}}^{\frac{a}{k}} x^2 \phi(x) dx$

$$\operatorname{Lim} A(k) = \operatorname{lim} B(k) = 0 \text{ as } k \to \infty$$

Engineering Mathematics III

We show that the treatment of β_p^q is as the same as β_2

Properties of kurtosis measure

Oja (1981) says a location and scale invariant function T can be named a kurtosis measure if $T(G) \ge T(F)$ whenever G has at least as much Kurtosis as F according to the definition of relative kurtosis.

T is a kurtosis measure if:

1- It must be location and scale invariant i.e.

$$T(ax+b) = T(x)$$
 for $a > 0$

2- It must preserve one of the orderings.

Ordering << were defined in such a way that F<< G means, in some location and scale free, that G has at least as much mass in the center and tails as F i.e.

if
$$F <_s G$$
 then $T(F) <= T(G)$