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/ Introduction

The usual kurtosis measure IS

62(17): 2

where :

\With X~ Fi(0)
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What i1s kurtosis ?

3, does not sort the distributions based on the height
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We compute 5, for some distributions,

Uniform, Normal, Logistic, Laplace, and
Cauchy for the above distributions the
kurtosis Measures, g, ,are 1.8, 3, 4.2, 6,

and oo respectively.
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ﬁVhat IS kurtosis ?
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the order of distributions will be

Uniform respectively.
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As the height of distributions increases,

Logistic, Cauchy, Normal, Laplace, and
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/ Disadvantages of 3. \

1- It’s infinite for heavy tail distributions.

2- It doesn’t work well for some distributions such as
Ali’s scale contaminated normal distributions.

_ 1 _ 1 Sl
By (@) =T =)0 (o) Ee s o( L))~ — o

P iy Pl +k

where @ (x) IS the standard normal distribution function.
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i i

when L — o

But this sequence converges in distribution to the standard
normal distributionas - — o .

3- It can be misleading as a departure from normality.

#>, = 3 Is not a sufficient condition for normality.
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/A Modified Measure of Kurtosg

EFKX — Er(2)) g (X"
Eal(X = Ep(X))2 Lpgy (X))

BY(F) =

o

Where p and g are quantile of order p and g, respectively

with X~ F'(.).
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Properties of G

i vk
m. %i_r}xg)ﬁﬁ_l((;) L By 1ff(x) >0 forall x. \

P.3. Ba(Fx) = B, (@ (x))

k — o0

Proof:
(1 - 2 2 () dz + A(k)

(- o) a6 (a) dz + BR))

since A (Fi(z)) = (

5 % 3 e
where A(K) = : ﬁ ¢ (z) dx And B(k) = i / ¢ (z) dx

k(k? —1) k(k2—1)
LimA(k) =limB(k)=0as g - /
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We show that the treatment of 57 is as the same as




/ Properties of kurtosis measure \

Oja (1981) says a location and scale invariant functionl T can be

named a kurtosis measure If 7(G) > T(F) whenever G has at least
as much Kurtosis as F according to the definition of relative
kurtosis.

T Is a kurtosis measure if :
1- It must be location and scale invariant 1.e.
T(ax+b) =T(x) fora>0
2- It must preserve one of the orderings.
Ordering << were defined in such a way that F<< G means,
In some location and scale free, that G has at least as much

mass In the center and tails as F 1.e.
\ If F<.G then T(F) <=T(G) /
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