Rate of convergence

Two Fundamental Approaches

- 1. Bracketing or Closed Methods
 - Bisection Method
 - False-position Method (Regula falsi).

2. Open Methods

- Newton-Raphson Method
- Secant Method
- Fixed point Methods

Bracketing Methods

Engineering Mathematics III

In Figure a) we have the case of $f(x_l)$ and $f(x_u)$ with the same sign, and there is no root in the interval (x_l,x_u) .

In Figure b) we have the case of $f(x_l)$ and $f(x_u)$ With different sign, and there is a root in the interval (x_l,x_u) .

In Figure c) we have the case of $f(x_l)$ and $f(x_u)$ with the same sign, and there are two roots.

In Figure d) we have the case of $f(x_l)$ and $f(x_u)$ with different sign, and there is an odd number of roots.

Bracketing Methods

 Though the cases above are generally valid, there are cases in which they do not hold.

In Figure a) we have the case of $f(x_l)$ and $f(x_u)$ with different sign, but there is a double root.

In Figure b) We have the case of $f(x_l)$ and $f(x_u)$ With different sign, but there are two discontinuities.

In Figure c) we have the case of $f(x_l)$ and $f(x_u)$ with the same sign, but there is a multiple root.

Bracketing Methods (Bisection method)

Bisection Method

Bracketing Methods (Bisection method)

Bisection Method

Advantages:

- 1. Simple
- 2. Estimate of maximum error: $\left| E_{\text{max}} \right| \le \left| \frac{x_1 x_u}{2} \right|$
- 3. Convergence guaranteed $\left| E_{\text{max}}^{i+1} \right| = 0.5 \left| E_{\text{max}}^{i} \right|$

Disadvantages:

- 1. Slow
- 2. Requires two good initial estimates which define an interval around root:
 - use graph of function,
 - incremental search, or
 - trial & error

Bracketing Methods (False-position Method)

False-position Method

Bracketing Methods (False-position Method)

There are some cases in which the false position method is very slow, and the bisection method gives

a faster solution.

Bracketing Methods (False-position Method)

Summary of False-Position Method:

Advantages:

- 1. Simple
- 2. Brackets the Root

Disadvantages:

- 1. Can be VERY slow
- 2. Like Bisection, need an initial interval around the root.

Open Methods

Roots of Equations - Open Methods

Characteristics:

- 1. Initial estimates need not bracket the root
- 2. Generally converge faster
- 3. **NOT** guaranteed to converge

Open Methods Considered:

- Fixed-point Methods
- Newton-Raphson Iteration
- Secant Method

Roots of Equations

Two Fundamental Approaches

- 1. Bracketing or Closed Methods
 - Bisection Method
 - False-position Method
- 2. Open Methods
 - One Point Iteration
 - Newton-Raphson Iteration
- ----- Secant Method

Open Methods (Newton-Raphson Method)

Newton-Raphson Method:

Geometrical Derivation:

Slope of tangent at x_i is

$$f'(x_i) = \frac{f(x_i) - 0}{x_i - x_{i+1}}$$

Solve for x_{i+1} :

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

[Note that this is the same form as the generalized onepoint iteration, $x_{i+1} = g(x_i)$]

Open Methods (Newton-Raphson Method)

Newton-Raphson Method

Open Methods

b) Oscilation in the neighboor of a maximum or minimum.

d) Existence of a null derivative.

a) Inflection point in the neighboor of a root.

c) Jumps in functions with several roots.

Engineering Mathematics III

Open Methods (Newton-Raphson Method)

Bond Example:

To apply Newton-Raphson method to:

$$f(i) = 7,500-1,000 \left[\frac{1-(1+i)^{-20}}{i} \right] = 0$$

We need the derivative of the function:

$$f'(i) = \frac{1,000}{i} \left\{ \left[\frac{1 - (1+i)^{-20}}{i} \right] - 20(1+i)^{-21} \right\}$$

Rate of convergence

compares the convergence of all the methods.

