


NUMERICAL DIFFERENTIATION

The derivative of f (x) at X, Is:

imit T h)— f
f'(X0)= h—)Ot (XO+ Iz (XO)

An approximation to this is:

f '(Xo)z f (XO + h)_ f (XO) for small values of h.

h
Forward Difference
Formula
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Let f(X)=Inx and x,=1.8
Find an approximate value for f ’(1.8)

h | f@8) | fLs+h)

f(1.8+h)— f(1.8)

h

0.1/0.5877867 |0.6418539

0.5406720

0.01|0.5877867 |0.5933268

0.5540100

0.001{0.5877867 |0.5883421

0.5554000

The exact value of f '(1,8) — (0.555
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Assume that a function goes through three points:

(%5 (%)) (. F(x,))and (x,, f(x,))

f(X) =~ P(x)

P ()= Lo () £ () + L) F(x)+ L(X)F (x;)

Lagrange Interpolating Polynomial }
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P(x)= Lo(x)T (%, )+ L (x)f (x )+ L (x)f (x,)

X
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If the points are equally spaced, I.e.,

X, =X,+h and X, =X, +2h

| - 2%, = (X, +h)—=(X, +2h)
j (XO)_{xO—(x +hyKx, — (%, +2h)}f(x)
2X, — Xy — (X, +2h)
{(x +h)—x }{(x +h) — (X, +2h)}f(x)
2X, — X, — (X, + )
{(x +2h) = x }{(x +2h) — (X, +h)}f(x)
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P1(x,) = —{- 31 (x,)+ 41 (x,)- F(x,)}

2h

Three-point formula:

F(x) oo 31 (%) +4 (%, + )= £(x,+ 20)
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If the points are equally spaced with x, in the middle:
X, =X,—h and X, =X,+h
0= el G} O
i Ty e ALY
{(x +h§x ><_})~E(x (J:(h)_ hzx —h)} f)
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P'(x,)=—y £ () 2o F ()

—h? 2h’ 2h’

Another Three-point formula:

f’(xo)z %{f(xo T h)_ f(xo - h)}
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Alternate approach (Error estimate)

Take Taylor series expansion of f(x+h) about x:

2 3

f(x+h)= f(x)+hf ’(x)+7 f@(x)+— f&(x)+--

3!

2 3

f(x+h)= F(x)=hf/(x)+ = FE(x)+ - FO(x)+-

3!

f(x+h)-f(x)
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f’(x) f(X+ h)— f(X) Forward Difference
h Formula
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2 3
f(x+2h)= f(x)+2hf'(x)+ % f2(x)+ % fO(x)+--

2 3
f(x+2h)- f(x)=2hf ’(x)+% f(z)(x)+% fO(x)+-

f(x+2h)- f(x) 2h .5

= £/(x)+ 2 Q)+ 2 F(x) 4

2h 2
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2 X Eqn. (1) — Egn. (2)
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f(x+h)— f(x) f(x+2h)— f(x)

2 _
h 2h

2 3
L f'(x)_& f(3)(x)_ﬁ f(4)(x)_...

3! 4

— f(x+2h)+4f(x+h)—3f(x)
2h
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— f(x+2h)+ 42fh(X +h)-37(x) = f'(x)+ O(hz)

£/(x)= " f(x+2h)+ 42fh(x +h)-3f(x) _ofh?)

F/(x)~ f(x+2h)+4f(x+h)-3f(x)
2h
Three-point Formula

2h?’ 6h?
o(h?)= -2 10~ D 19 x)-
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The Second Three-point Formula

Take Taylor series expansion of f(x+h) about x:

f(xeh)= £ () E 0+ 2 120 £ ()

Take Taylor series expansion of f(x-h) about x:

(=)= £+ ()= 10

3!

Subtract one expression from another

f(x+h)- f(x—h)=2hf"(x )+%f()( )+ 26i!6f(6)(x)+..-
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f(x+h) f(x—h)=2hf (x)+ 20 FO() 2 F0I(x) 4 .
3! o!
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/(x) = f(x+h)2—hf(x— h)+o(h2)

h? h®
)=~ 1)~ 0 ..

£1(x) ~ f(x+h)2—hf(x—h)

Second Three-point Formula
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Summary of Errors

f’(x) f(X+ h)— f(X) Forward Difference

N/
"~y

h Formula
h o0, N o)
Error term O(h)zgf (x)+§f (%)+---
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Summary of Errors continued

First Three-point Formula

()~ f(x+2h)+4f(x+h)-3f(x)
2h
2h? 6h’
Error term O(h2)= - f(B)(X)_T f(4)(x)_...
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Summary of Errors continued

Second Three-point Formula

£/(x) ~ f(x+h)— f(x—h)

2h

2
Error term  O(h?)= e f ®)(x)
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Example:

f(x)= Xe”

Find the approximate value of f '(2) with  h=0.1

X f (x)
1.9 12.703199
2.0 14.778112
2.1 17.148957
2.2 19.855030
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Using the Forward Difference formula:

1

f’(xo)zﬁ{f (X +h)—f (%)}

(2)~ {1 (2)- 1 (2)}

_ 1 117148957 -14.778112)

0.1
= 23.708450
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Using the 15t Three-point formula:

1“(x0)zi{—sf(xo)+4f(xO +h)— f(x,+2h)}

f'(2)~ il 01[ 3f(2)+4f(2.1)- f(2.2)]

=4 2[ 3x14.778112 +4x 17.148957

—19.855030 |
= 22.032310
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Using the 2" Three-point formula:

f'(Xo)z %{f(xo T h)_ f(xo = h)}

f'(2)= 2 5 1[1‘(2 1)- f(1.9)]

; [17.148957 ~12.703199 ]

= 22.228790
The exact value of f’(2) 1S: 22.167168
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Comparison of the results with h = 0.1

The exact value of f ’(2) is 22.167168

Formula f'(2) Error
Forward Difference | 23.708450 1.541282
1st Three-point 22.032310 0.134858
2nd Three-point 22.228790 0.061622
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Second-order Derivative

2 3
f(x+h)= f(x)+hf ’(x)+h7 f<2>(x)+% fO(x)+---

2 3

f(x-h)= f(x)—hf’(x)+7 f<2>(x)_a fO(x)+ -

Add these two equations.

2 4
f(x+h)+ f(x=h)= 2f(x)+% FO(x)+ 2 £6)(x) -

2 4
F (o h)=21 (x)+ £ (x=h) = 5= 10 ()4 2 1 ()~
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NUMERICAL INTEGRATION

I f (X)dx = area under the curve f(x) between
X=a to x=Dh.

In many cases a mathematical expression for f(x) is
unknown and in some cases even if f(x) is known its
complex form makes it difficult to perform the integration.
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f(b)

f(a)
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Area of the trapezoid

The length of the two parallel sides of the trapezoid
are: f(a) and f(b)

The height Is b-a
b
[ £ (x)dx zb;za[f(a)+ f (b)]

= [t @+ f0)]

Engineering Mathematics 111
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Simpson’s Rule:

X

j Xi‘(x)dx ~ j Fz>(x)dx

Xg X

X, =X,+h and x, =X,+2h
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82 (7 (X=X))(X=X,)
‘[Xo P(X)dx_ Xo (Xo_x1)(xo_xz)f(XO)dX

N 2 (X=X )(X—X,) f(Xl)dX
Xo(Xl_XO)(Xl_XZ)

2 (X_XO)(X_Xl) .I:(X )dX
Xo(xz_xo)(xz_x1) 2
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j 1 (X)dX ~ j Xlg(x)dx

g[f(x0)+4f(x1)+ f(x,)]
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Composite Numerical Integration
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Riemann Sum

The area under the curve iIs subdivided into n
subintervals. Each subinterval iIs treated as a
rectangle. The area of all subintervals are added
to determine the area under the curve.

There are several variations of Riemann sum as
applied to composite integration.
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Left Riemann Sum

a @ P
—i AX e

j:f(x)dXziZ::f(xi)Ax

Engineering Mathematics 111

AXj5 &Qf’[_@;’réa{ﬁn

X, sum, the left-
side sample of

X, th@ftmndtion is
used a t&

X3 ﬁe F\_tz ﬁe
individual
rectan

le.
T = a+€i —1)Ax
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' Right Riemann Sum I%&@(Iqﬁeﬁw)%rp

! sum, the, right-side
sa]mple of the
fl(lpc;lsl@n-is&éem as
the hel f.the

4 if @Ilvui% $&%%ngle.

i ——x X=a+t IAX

— AX i-—

j:f(x)dXziZ::f(xi)Ax
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Midpoint Rule
f—-&
s ¥¥

.

_,éAxL_

x)dXzian:f(xi)Ax

Engineering Mathematics 111

b

Ay mﬂhea Idpoint
the sample at

% = the hhigrelof tne/ 2)

x, =linteryaliy used 2)

as the helgh f the
X; =@ di Ax/2)

: rectangle.

-x X =a+(2xi-1)(Ax/ 2)
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Composite Trapezoidal Rule:

Divide the interval into n subintervals and apply
Trapezoidal Rule in each subinterval.

b B n-1 N
If(x)dng f(a)+2) f(x)+ f(b)
a L k=1 N
where

h=2"2 andx, =a+kh fork=0,12,.

n
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Find [ sin(x)dx
0

by dividing the interval into 20 subintervals.

n=20
h_b—a_ T
N 20
X, =a+kh=ﬁ, k=012, ....
20

Engineering Mathematics 111
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j sin(x)dx ~
0

_m
40|

— 1.995886

h

2

f(a)+ 2§ f(x,)+ f(b)_

sin(0)+ ZZsm( l;g)+8in(7t)

Engineering Mathematics




Composite Simpson’s Rule:

Divide the interval into n subintervals and apply

Simpson’s Rule on each consecutive pair of subinterval.
Note that n must be even.

h (n/2)-1

if(x)obmg fa)+2 ) f(xy)

n/2

+ 42 f (X, )+ f(b)
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where

b—a

h= and x, =a+kh fork=0,12,...

n
Find [ sin(x)dx
0

by dividing the interval into 20 subintervals.

=20 h2-a_2=7
N 20
xk=a+kh=@, K=0.12 ... 20

Engineering Mathematics 111
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0 60 P 20
10 . 1
+4) sin Sl +sin(m)
| 20

= 2.000006
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