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i Solution of linear system of equations

= Numerical solution of differential equations
(Finite Difference Method)

= Numerical solution of integral equations (Finite
Element Method, Method of Moments)
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Consistency (Solvability)

= The linear system of equations Ax=b has a
solution, or said to be consistent IFF

Rank{A}=Rank{A|b}
= A system is inconsistent when
Rank{A}<Rank{A|b}

Rank{A} is the maximum number of linearly independent columns
or rows of A. Rank can be found by using ERO (Elementary Row
Oparations) or ECO (Elementary column operations).

ERO=# of rows with at least one nonzero entry
ECO=# of columns with at least one nonzero entry
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i Elementary row operations

= The following operations applied to the
augmented matrix [A|b], yield an equivalent
linear system

=« Interchanges: The order of two rows can be
changed

= Scaling: Multiplying a row by a nonzero constant

= Replacement: The row can be replaced by the sum
of that row and a nonzero multiple of any other row.
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An inconsistent example

HHMEN

ERO:Multiply the first row with ~ eawsionz

equation 1

-2 and add to the second row
1 2 | i
0 0 Rank{A}=1 Then this
system of
equations is
1 2 4 \not solvable
{O 0 _3} Rank{A|b}=2 /
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i Uniqueness of solutions

= The system has a unique solution IFF
Rank{A}=Rank{A|b}=n
n is the order of the system

= Such systems are called full-rank systems
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‘L Full-rank systems

= If Rank{A}=n

Det{A} = 0 = A is nonsingular so invertible
Unique solution

1

iBEE

—1

_equation 1

eduation 2
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i Rank deficient matrices

= If Rank{A}=m<n

Det{A} = 0 = A is singular so not invertible
infinite number of solutions (n-m free variables)
under-determined system

1 2] x| [4
2 4| X 8

equation 1

Rank{A}=Rank{A|b}=1
Consistent so solvable
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i Ill-conditioned system of equations

= A small deviation in the entries of A matrix,
causes a large deviation in the solution.

1 2 |I%| | 3 _ X |
048 0.99] x,| |1.47 X, | |1
1 2 Tx] [ 3° X | |3

I
U
|

1049 0.99]x,| |1.47 X, | O
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i Ill-conditioned continued.....

= A linear system of

2.5

equationsissaidto 2

be “ill-conditioned”

x 1l

if the coefficient

0.5-

matrix tends to be o

_0.5_

singular

-1
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i Types of linear system of equations

= Coefficient matrix A is square and real
= The RHS vector b is nonzero and real

= Consistent system, solvable

= Full-rank system, unique solution

= Well-conditioned system
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i Solution Techniques

= Direct solution methods

= Finds a solution in a finite number of operations by
transforming the system into an equivalent system
that is ‘easier’ to solve.

= Diagonal, upper or lower triangular systems are
easier to solve

= Number of operations is a function of system size n.

s [terative solution methods

» Computes succesive approximations of the solution
vector for a given A and b, starting from an initial
point X,.

« Total number of operations is uncertain, may not
converge.
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i Direct solution Methods

= Gaussian Elimination

= By using ERO, matrix A is transformed into an upper
triangular matrix (all elements below diagonal 0)

= Back substitution is used to solve the upper-

triangular system
c
Ay o8y A || X b1 Ay vt 8y A || X b1 -'5
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o
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First step of elimination

Pivotal element
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Second step of elimination

Pivotal element
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Gaussion elimination algorithm

_ Aalp) (p)
m, , =a; /app
(p) _
a,, =0

(p+1) _ R(P) (p)
bPY =p{P —m,  xbf
For c=p+1 ton

(p+) _ A(p) (p)
a‘rc: — arc o mr,p X apc
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Back substitution algorithm
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i Operation count

= Number of arithmetic operations required by
the algorithm to complete its task.

= Generally only multiplications and divisions are
counted

= Elimination process

2
= Back substitution M +N Dominates
2 Not efficient for
3 different RHS vectors

3 3
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