Stress and Strain

Solid Deformation

- Solids deform when they are subject to forces.
- Compressed, stretched, bent, twisted
- They can maintain or lose their shape

The ratio of the force to the displacement is a constant.

- Hooke's Law
$F \propto x \quad F=k \Delta x$

(1) TSS

- A force on a solid acts on an area.
- For compression or tension, the normal stress σ is the ratio of the force to the cross sectional area.

- Measures pressure
- SI unit pascal
- $\mathrm{Pa}=\mathrm{N} / \mathrm{m}^{2}=\mathrm{kg} / \mathrm{m} \mathrm{s}^{2}$

$$
\sigma=\frac{F}{A}
$$

Stiletto Heels

- A 60 kg woman takes off a shoe with an area of $130 \mathrm{~cm}^{2}$ and puts on a spiked heel with an area of $0.8 \mathrm{~cm}^{2}$.

What stress is placed on the floor?
$>$ The force is due to weight, about 600 N .
> The stress with regular shoes is $600 \mathrm{~N} / 0.013 \mathrm{~m}^{2}=$ $46 \mathrm{kN} / \mathrm{m}^{2}$.
> The stress with spiked heels is $600 \mathrm{~N} / 0.00008 \mathrm{~m}^{2}=7.5$ $\mathrm{MN} / \mathrm{m}^{2}$.
> For comparison that is an increase of from about 7 psi to over 1000 psi!

Strain

- Deformation is relative to the size of an object.
- The displacement compared to the length is the strain ε.
- Measures a fractional change

- Unitless quantity

$$
\varepsilon=\frac{\Delta x}{L}
$$

Young's Modulus

$$
F=\left(\frac{Y A}{L}\right) \Delta x=k \Delta x
$$

- A graph of stress versus strain is linear for small stresses.
- The slope of stress versus strain is a modulus that depends on the type of material.

For normal stress this is Young's modulus Y.

- Connects to Hooke's law

Inelastic Material

- The linear behavior of materials only lasts up to a certain strength - the yield strength.
- Materials can continue to deform but they won't restore their shape.
- For very high strain a material will break.

Shear Force

- Displacement of a solid can follow the surface of a solid.

This is due a shear force.

- One can measure a shear stress σ_{s} and a shear strain ε_{s}.

$$
\sigma_{s}=\frac{F}{A}
$$

$$
\varepsilon_{s}=\frac{\Delta x}{L}
$$

Shear Modulus

A (goes into screen)

$$
S=\frac{\sigma_{s}}{\varepsilon_{s}}=\frac{F / A}{\Delta x / L}=\frac{F L}{A \Delta x}
$$

$$
F=\left(\frac{S A}{L}\right) \Delta x=k \Delta x
$$

- Materials also have a modulus from shear forces.
- Shear modulus S also relates to Hooke's law.

The angle $\gamma=\Delta x / L$ is sometimes used for shear.

- Sine approximates angle

Twista Ley

- One common fracture is a torsion fracture. A torque is applied to a bone causing a break.
- The shear modulus of bone is 3.5 GPa .
- The lower leg has a breaking angle of 3°.
- It requires 100 Nm of torque.
> Torque and angle apply.
$>$ Angle is $\Delta x / L=\tan \gamma$
\Rightarrow Approximately $R \phi / L=\gamma$
$>$ Sheer is related to torque.

$$
\begin{aligned}
& S=\frac{\sigma_{s}}{\varepsilon_{s}}=\frac{F L}{A \Delta x}=\frac{F}{A \gamma} \\
& S \propto \frac{\tau}{\gamma}
\end{aligned}
$$

Volume Stress

- Pressure from all sides can change the volume of a solid.

There is a volume stress and volume strain.

$$
\sigma_{V}=\frac{F}{A}=P \quad \varepsilon_{V}=\frac{\Delta V}{V}
$$

Bulk Modulus

- Pressure changes volume, not length.
- Bulk modulus B relates changes in pressure and volume.
(The negative sign represents the decrease in volume with increasing pressure.

$$
B=-\frac{\sigma_{V}}{\varepsilon_{V}}=-\frac{F / A}{\Delta V / V}=-\frac{\Delta P}{\Delta V / V}
$$

Under Pressure

- Steel has a bulk modulus of $B=60 \mathrm{GPa}$. A sphere with a volume of $0.50 \mathrm{~m}^{3}$ is constructed and lowered into the ocean where $P=20$ MPa .

How much does the volume change?
> Use the relation for bulk modulus.

$$
\begin{aligned}
& >B=-(\Delta P) /(\Delta V / V) \\
& >\Delta V=-V \Delta P / B
\end{aligned}
$$

> Substitute values:

$$
\begin{aligned}
> & \left(-0.50 \mathrm{~m}^{3}\right)\left(2.0 \times 10^{7} \mathrm{~Pa}\right) / \\
& \left(6.0 \times 10^{10} \mathrm{~Pa}\right) \\
> & \Delta V=-1.6 \times 10^{4} \mathrm{~m}^{3}
\end{aligned}
$$

