Thin and Thick Pressure Vessels

Unit 4

Classify a pressure vessel as thin-walled or thick-walled Calculate the stress (hoop stress) in a sphere subject to an internal pressure Calculate the stress (hoop stress and longitudinal stress) in a cylinder subject to an internal pressure
Determine the required wall thickness of a pressure vessel to safely resist a given internal pressure
Iapter Objectives

Terminology:

R_{i}, R_{0}, R_{m} - Inside, outside and mean (average) radii

- D_{i}, D_{0}, D_{m} - Inside, outside and mean (average) diameters
t - wall thickness
If $R_{m} / t \geq 10$, pressure vessel is considered thin-walled
- In terms of the diameter; $D_{m} / t \geq 20$
- Derivation of formulas for stresses in thin-walled pressure vessels are based on the assumption that the stresses are constant throughout the wall of the vessel
- If $R_{m} / t \geq 10$, pressure vessel is considered thick-walled
- Stresses in thick-walled pressure vessels are not constant throughout the wall of the vessel

Thin-walled Pressure Vessels

Internal pressure in sphere acts perpendicular to the surface

Uniform over the interior surface
Cut Free-Body Diagram through center of sphere
Internal forces in walls appear on FBD

- Since FBD was cut through center of sphere, these forces are horizontal
For vertical equilibrium: $\sum F_{Y}=0$
- Vertical components of internal pressure are equal and opposite
- Vertical components in opposite directions cancel each other

For horizontal equilibrium: $\Sigma F_{X}=0$

- Internal force in wall must equal the resultant horizontal force due to internal pressure

> Thin-walled Spheres

Considering horizontal components of internal pressure - Resultant force $F_{R}=p A_{P}$

- $A_{p}=$ projected area of sphere on plane cut through the diameter $=\pi \mathrm{D}_{\mathrm{m}}{ }^{2} / 4$
Since $\Sigma F_{X}=0$, internal force in wall $=F_{R}$
Stress in wall: $\sigma=F / A=F_{R} / A_{W}$
- $A_{w}=$ Area of sphere wall
- $A_{w}=\pi D_{o}{ }^{2} / 4-\pi D_{i}{ }^{2} / 4=\pi\left(D_{o}^{2}-D_{i}^{2}\right) / 4$
- For a thin-walled sphere
- $A_{W} \approx \pi D_{m} t-->$ the area of a strip of thickness $=t$ and length = average circumference ($\pi \mathrm{D}_{\mathrm{m}}$)
- Stress in wall of sphere
- $\boldsymbol{\sigma}=F_{R} / A_{W}=p A_{p} / A_{w}=p\left(\pi D_{m}^{2} / 4\right) / \pi D_{m} t=p D_{m}$ / 4 t

Thin-walled Spheres

Cylinders used as pressure vessels and for piping of fluids under pressure
Two types of stresses

- Longitudinal stress - along the long axis of the cylinder
- Hoop stress (tangential stress) - around the circumference of the cylinder

Longitudinal Stress

Cut Free-Body Diagram through cylinder, perpendicular to longitudinal axis
Longitudinal internal forces in walls appear on FBD

- Forces are horizontal

For horizontal equilibrium: $\sum F_{X}=0$

- Internal force in wall must equal the resultant horizontal force due to internal pressure
Longitudinal Stress in
Thin-walled Cylinders

If end of cylinder is closed, resultant force $F_{R}=p A=p \pi$
Since $\sum F_{X}=0$, longitudinal internal force in wall $=F_{R}$ Stress in wall: $\sigma=F / A=F_{R} / A_{w}$
$A_{w}=$ Area of sphere wall

$$
A_{W}=\pi D_{0}^{2} / 4-\pi D_{i}^{2} / 4=\pi\left(D_{0}^{2}-D_{i}^{2}\right) / 4
$$

- For a thin-walled cylinder
- $A_{w} \approx \pi D_{m} t$,
- The area of a strip of thickness = t and length = average circumference (πD_{m})
- Longitudinal stress in wall of cylinder
- $\boldsymbol{\sigma}=F_{R} / A_{W}=p A_{p} / A_{w}=p\left(\pi D_{m}^{2} / 4\right) / \pi D_{m} t=p D_{m} / 4$
- Longitudinal stress is same as stress in a sphere

> Longitudinal Stress in Thin-walled Cylinders

Isolate a ring of length L from the cylinder

Cut a vertical section through ring, passing through its

 centerDraw a FBD of segment either side of section
Similar to analysis of sphere, resultant force $F_{R}=p A_{p}$
$A_{P}=$ projected area of ring $=D_{m} L$

- Stress in wall: $\sigma=F / A=F_{R} / A_{W}$
$A_{w}=$ Cross-sectional area of cylinder wall $=2 \mathrm{t} \mathrm{L}$
- Hoop stress in wall of cylinder
- $\boldsymbol{\sigma}=F_{R} / A_{w}=p A_{p} / A_{w}=p D_{m} L / 2 t L=p D_{m} / 2 t$
- Hoop stress is twice the magnitude of longitudinal stress
- Hoop stress in the cylinder is also twice the stress in a sphere of the same diameter carrying the same pressure

oop Stress in Thin-walled Cylinders

