Thin and Thick Pressure Vessels

Unit 4

- <u>Classify</u> a pressure vessel as thin-walled or thick-walled
- <u>Calculate</u> the stress (hoop stress) in a sphere subject to an internal pressure
- <u>Calculate</u> the stress (hoop stress and longitudinal stress) in a cylinder subject to an internal pressure
- <u>Determine</u> the required wall thickness of a pressure vessel to safely resist a given internal pressure

Chapter Objectives

• Terminology:

- R_i, R_o, R_m, Inside, outside and mean (average) radii
- D_i , D_o , D_m , Inside, outside and mean (average) diameters
- t wall thickness
- If R_m / t ≥ 10, pressure vessel is considered <u>thin-walled</u>
 In terms of the diameter; D_m / t ≥ 20
- Derivation of formulas for stresses in thin-walled pressure vessels are based on the <u>assumption</u> that the stresses are <u>constant</u> throughout the wall of the vessel
- If R_m / t ≥ 10, pressure vessel is considered <u>thick-walled</u>
 Stresses in thick-walled pressure vessels are <u>not</u> constant throughout the wall of the vessel

Thin-walled Pressure Vessels

- Internal pressure in sphere acts perpendicular to the surface
 - Uniform over the interior surface
- Cut Free-Body Diagram through center of sphere
- Internal forces in walls appear on FBD
 - Since FBD was cut through center of sphere, these forces are horizontal
- For vertical equilibrium: $\Sigma F_Y = 0$
 - Vertical components of internal pressure are equal and opposite
 - Vertical components in opposite directions cancel each other
- For horizontal equilibrium: $\Sigma F_X = 0$
 - Internal force in wall must equal the resultant horizontal force due to internal pressure

Thin-walled Spheres

Considering horizontal components of internal pressure

- Resultant force $F_R = p A_P$
 - $A_p = projected$ area of sphere on plane cut through the diameter = $\pi D_m^2 / 4$
- Since $\Sigma F_X = 0$, internal force in wall = F_R
- Stress in wall: $\sigma = F/A = F_R / A_W$
 - A_W = Area of sphere wall

•
$$A_W = \pi D_o^2 / 4 - \pi D_i^2 / 4 = \pi (D_o^2 - D_i^2) / 4$$

- For a thin-walled sphere
 - $A_W \approx \pi D_m t$ --> the area of a strip of thickness = t and length = average circumference (πD_m)
- Stress in wall of sphere
 - $\sigma = F_R / A_W = p A_P / A_W = p (\pi D_m^2 / 4) / \pi D_m t = p D_m / 4 t$

Thin-walled Spheres

- Cylinders used as pressure vessels and for piping of fluids under pressure
- Two types of stresses
 - Longitudinal stress along the long axis of the cylinder
 - Hoop stress (tangential stress) around the circumference of the cylinder

Thin-walled Cylinders

Longitudinal Stress

- Cut Free-Body Diagram through cylinder, perpendicular to longitudinal axis
- Longitudinal internal forces in walls appear on FBD
 - Forces are horizontal
- For horizontal equilibrium: ∑ F_X = 0
 Internal force in wall must equal the resultant horizontal force due to internal pressure

Longitudinal Stress in Thin-walled Cylinders

- If end of cylinder is closed, resultant force $F_R = p A = p \pi D_m^2 / 4$
 - Since $\Sigma F_X = 0$, longitudinal internal force in wall = F_R
- Stress in wall: $\sigma = F/A = F_R / A_W$
 - A_W = Area of sphere wall
 - $A_W = \pi D_o^2 / 4 \pi D_i^2 / 4 = \pi (D_o^2 D_i^2) / 4$
- For a thin-walled cylinder
 - $\underline{A}_W \approx \pi D_m t$,
 - The area of a strip of thickness = t and length = average circumference (πD_m)
- Longitudinal stress in wall of cylinder
 - $\sigma = F_R / A_W = p A_P / A_W = p (\pi \hat{D}_m^2 / 4) / \pi D_m t = p D_m / 4$

Longitudinal stress is <u>same</u> as stress in a sphere

Longitudinal Stress in Thin-walled Cylinders

Isolate a ring of length L from the cylinder

- Cut a vertical section through ring, passing through its center
- Draw a FBD of segment either side of section
- Similar to analysis of sphere, resultant force $F_R = p A_P$
 - $A_P = projected$ area of ring = $D_m L$
- Stress in wall: $\sigma = F/A = F_R / A_W$
 - A_W = Cross-sectional area of cylinder wall = 2 t L
- Hoop stress in wall of cylinder
 - $\sigma = F_R / A_W = p A_P / A_W = p D_m L / 2 t L = p D_m / 2 t$
 - Hoop stress is twice the magnitude of longitudinal stress
 - Hoop stress in the cylinder is also twice the stress in a sphere of the same diameter carrying the same pressure

Hoop Stress in Thin-walled Cylinders