LIMITS--- High limit

Low limit

FITS--- Clearance fit

Interference fit

Transition fit

LIMITS:- These are two extreme permissible sizes of dimension between which actual size of dimension is contained. The greater of these two is called high limit and the smaller low limit

FITS:-

- It is the relationship existing between two mating parts wrt amount of play or interference which is present when they are assembled together.
- It is the degree of tightness or looseness between two mating parts to perform a definite function

Terms used in limits & fits:-

- Shaft
- Hole
- Basic size
- Actual size
- Limits of size— HL & LL
- Tolerance = HL-LL
- Allowance = Difference between MMC of mating parts

Deviation---

- Upper deviation
- Lower deviation
- Mean deviation

Zero Line

Fundamental Deviation

FITS

TYPES OF FITS-

- Clearance fit- Min & Max clearance
- Interference, Press or Force fit— Min & Max interference
- Transition fit

Fig. 9.2. Limits and Tolerance.

Fig. 9.3. Deviations.

HOLE/SHAFT BASIS SYSTEM

Various allowances for different fits maybe

obtained in two ways:-

- Hole base system
- Shaft base system

HOLE BASIS SYSTEM

- HOLE SIZE IS KEPT CONSTANT AND SHAFT IS VARIED TO GIVE VARIOUS TYPES OF FIT.
- BASIC SIZE TAKEN IS LOW LIMIT OF HOLE
- HIGH LIMIT OF HOLE & TWO LIMITS (HL&LL) GIVE
 THE DESIRED FIT

HOLE BASIS SYSTEM

- 1 --- Clearance fit
- 2—Transition fit
- 3 Interference fit

SHAFT BASIS SYSTEM

- SHAFT SIZE IS KEPT CONSTANT & HOLE SIZE IS VARIED TO GIVE VARIOUS FITS.
- BASIC SIZE IS TAKEN AS MAX LIMIT SIZE OF SHAFT.
- LL OF SHAFT AND TWO LIMITS (HL & LL) OF HOLE GIVE THE DESIRED FIT.
- METHOD NOT PREFERRED IN LARGE PRODUCTION

SHAFT BASIS SYSTEM

- 1 --- Interfernce fit
- 2—Transition fit
- 3 -- Clearance fit

TOLERANCE

- Permissible variation in size or dimension is called tolerance.
- Amount by which a job is allowed to go away from accuracy without any functional trouble

 25 ± 0.005 cm

TOLERANCE

PERMISSIBLE VARIATION IN SIZE OR DIMENSION IS CALLED TOLERANCE

- UNILATERAL TOLERANCE

BILATERAL TOLERANCE

COLLATERAL TOLER

ISO SYSTEM OF Limits & fits

- Covers holes and shafts upto 3150 mm
- For any basic size there are 28 different holes progressively oversize and undersize.
- 28 holes are --

A,B,C,CD,D,E,EF,F,FG,G,H,J,JS,K,M,N,P,R,S,T,U,V,

X,Y,Z,ZA,ZB,& ZC

 Each hole has a choice of 18 grades of tolerance i.e. IT01,IT0,IT1 to IT16 (Similarly for shafts)

Tolerance grades decide the accuracy of manufacture

VALUES OF TOLERANCES

```
IT 6 1T4 1T8 1T9 1T10 1T11 1T12 1T15 1T14 1T15 1T16
  101 161 521 HON 944 1004 1997 5207 HOON 6404 10007
UPTO STO MOM :- L = TOLERANCE UNIT = 0.45 30 +0.001 D
        D= geometric mean dia = Vd, xd;
        d, d2 = DIAMETRAL STEPS LE.
         1-3, 3-6, 6-10, 10-14 mm ETC.
         i= 0.004D+2.1
```

ARRANGEMENT OF HOLES & SHAFTS

