The Finite Element Method
Defined

The Finite Element Method (FEM) is a weighted
residual method that uses compactly-supported
basis functions.




Introduction to FEM

Unit 5




Brief Comparison with Other
Methods

Finite Difference (FD)
Method:

FD approximates an
operator (e.g., the
derivative) and solves a

problem on a set of points
(the grid)

Finite Element (FE)
Method:

FE uses exact operators
but approximates the
solution basis functions.
Also, FE solves a problem
on the interiors of grid
cells (and optionally on the
gridpoints as well).




Brief Comparison with Other
Methods

Spectral Methods: Finite Element (FE)
Method:

Spectral methods use

global basis functions to FE methods use compact

approximate a solution basis functions to

across the entire domain. approximate a solution on

individual elements.




Overview of the Finite Element

Method
(§) = (W)=(G) = (M)
Strong Weak Galerkin Matrix
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Sample Problem

Axial deformation of a bar subjected to a uniform load

(1-D Poisson equation)
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u = axial displacement
E=Young’s modulus = 1

A=Cross-sectional area =




Strong Form

The set of governing PDE’s, with boundary conditions, 1s
called the “strong form” of the problem.

Hence, our strong form is (Poisson equation in 1-D):
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Weak Form

We now reformulate the problem into the weak form.

The weak form 1s a variational statement of the problem 1n
which we integrate against a test function. The choice of test
function 1s up to us.

This has the effect of relaxing the problem; instead of finding
an exact solution everywhere, we are finding a solution that
satisfies the strong form on average over the domain.




Weak Form
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v 1s our test function

We will choose the test function later.




Weak Form

Why is it “weak™?
It 1s a weaker statement of the problem.

A solution of the strong form will also satisfy the weak form,
but not vice versa.

Analogous to “weak’ and “strong” convergence:
strong: lmx, = x

weak : 1im<f xn>:<f‘x> vf
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Weak Form

Choosing the test function:

We can choose any v we want, so let's choose v such that 1t
satisfies homogeneous boundary conditions wherever the actual
solution satisfies Dirichlet boundary conditions. We’ll see why
this helps us, and later will do 1t with more mathematical rigor.

So 1n our example, #(0)=0 so let v(0)=0.




Weak Form

Returning to the weak form:
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Weak Form

Recall the boundary conditions on # and v:

u(0)=0
dul g
dx x=L
v(0)=0
Hence,
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The weak form
satisfies Neuman
conditions
automatically!




Weak Form

Why 1s it “variational”?

Variational statement :
Find u € H' such that B(u,v)= F(v) VveH,

B a bilinear functional, F' a linear functional

u and v are functions from an infinite-dimensional
function space H




Galerkin’s Method

We still haven’t done the “finite element method” yet, we have
just restated the problem in the weak formulation.

So what makes it “finite elements’?
Solving the problem locally on elements

Finite-dimensional approximation to an infinite-  dimension
space — Galerkin’s Method




Galerkin’s Method

N
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Choose finite basis {¢, }
Then,

N
u(x)= Z C,Q; (x), ¢ ; unkowns to solve for
j=1

N
v(x)= Z b.p, (x), b ; arbitrarily chosen
j=1

Insert these into our weak form :




Galerkin’s Method
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Galerkin’s Method

Al do. do.
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We now have a matrix problem Ke = F, where ¢,

1S a vector of unknowns,

Ld(ﬂ] d(ﬂl dx
i~ Jy dx dx

and F; = .[0 Pop,dx

We can already see K; will be symmetricsince we can

interchange i, j without effect.




Galerkin’s Method

So what have we done so far?
1) Reformulated the problem in the weak form.
2) Chosen a finite-dimensional approximation to the solution.

Recall weak form written in terms of residual:
il d*u L L
jo (ﬁ — Do jva’x = IO Rvdx = Zi:bl. jo Rp.dx =0

This 1s an L, inner-product. Therefore, the residual is orthogona
to our space of basis functions. “Orthogonality Condition™




Orthogonality Condition
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Therefore, given some space of approximate functions H", we ar
finding u” that is closest (as measured by the L, inner product) to
the actual solution u.




Discretization and Basis Functions

Let’s continue with our sample problem. Now we discretize our
domain. For this example, we will discretize x=[0, L] into 2
“elements”.
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In 1-D, elements are segments. In 2-D, they are triangles, tetrad
etc. In 3-D, they are solids, such as tetrahedra. We will solve th
Galerkin problem on each element.




Discretization and Basis Functions

For a set of basis functions, we can choose anything. For
simplicity here, we choose piecewise linear “hat functions”.

Our solution will be a linear combination of these functions.

A

P> ?s3

| Ly

I 1

x;=0 X,=L/2 =

Basis functions satisty : ¢, (x j): o j’ —> Our solution will be

interpolatory. Also, they satisfy the partitionof unity.




Discretization and Basis Functions

To save time, we can throw out ¢, a priori because, since in this
example u(0)=0, we know that the coefficent ¢, must be 0.
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Matrix Formulation
Given our matrix problem Ke = F:

icj jL 99, d9, dx = LL po@.dx = Ke=F

T~ dx dx
C 'g

K F
We can insert the ¢, chosen on the previousslide and
arrive at a linear algebra problem. Differentiating the basis

functions, then evaluating theintegrals, we have :
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In a computer code, differentiating the basis functions can be
done 1n advance, since the basis functions are known, and
integration would be performed numericall y by quadrature.

It is standard in FEM to use Gaussian quadrature, since it 1s exact
for polynomials.

Notice K is symmetricas expected.




Solution

Solving the Gaussian elimination problem on the previous sl

we obtain our coefficientsc; :

c=| %, |, which when multiplied by basis functions ¢, gives

our final numerical solution:

px)= {

The exact analytical solution for this problemis :
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u(x) = polx—




Solution
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Notice the numerical solution 1s “interpolatory”, or nodally exact.




Concluding Remarks

*Because basis functions are compact, matrix K is typically
tridiagonal or otherwise sparse, which allows for fast solvers that
take advantage of the structure (regular Gaussian elimination 1s
O(N?), where N is number of elements!). Memory requirements
are also reduced.

*Continuity between elements not required. “Discontinuous
Galerkin” Method




