
The Finite Element Method 

Defined 

The Finite Element Method (FEM) is a weighted 

residual method that uses compactly-supported 

basis functions. 



Introduction to FEM 

Unit 5 

 



Brief Comparison with Other 

Methods 

Finite Difference (FD) 

Method: 

FD approximates an 

operator (e.g., the 

derivative) and solves a 

problem on a set of points 

(the grid) 

Finite Element (FE) 

Method: 

FE uses exact operators 

but approximates the 

solution basis functions.  

Also, FE solves a problem 

on the interiors of grid 

cells (and optionally on the 

gridpoints as well). 



Brief Comparison with Other 

Methods 

Spectral Methods: 

Spectral methods use 

global basis functions to 

approximate a solution 

across the entire domain. 

Finite Element (FE) 

Method: 

FE methods use compact 

basis functions to 

approximate a solution on 

individual elements. 
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Axial deformation of a bar subjected to a uniform load 

(1-D Poisson equation) 

Sample Problem 
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 L=x 0,

u = axial displacement 

E=Young’s modulus = 1 

A=Cross-sectional area = 1 



Strong Form 

The set of governing PDE’s, with boundary conditions, is 

called the “strong form” of the problem. 

Hence, our strong form is (Poisson equation in 1-D): 
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We now reformulate the problem into the weak form.  

The weak form is a variational statement of the problem in 

which we integrate against a test function.  The choice of test 

function is up to us.   

This has the effect of relaxing the problem; instead of finding 

an exact solution everywhere, we are finding a solution that 

satisfies the strong form on average over the domain. 

Weak Form 



Weak Form 
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Residual   R=0 

Weak Form 

v is our test function 

We will choose the test function later. 



Why is it “weak”? 

It is a weaker statement of the problem. 

A solution of the strong form will also satisfy the weak  form, 

but not vice versa. 

Analogous to “weak” and “strong” convergence: 

Weak Form 
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Weak Form 

Choosing the test function: 

 

We can choose any v we want, so let's choose v such that it 

satisfies homogeneous boundary conditions wherever the actual 

solution satisfies Dirichlet boundary conditions.  We’ll see why 

this helps us, and later will do it with more mathematical rigor. 

 

So in our example, u(0)=0 so let v(0)=0. 

 



Returning to the weak form: 
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Weak Form 

Integrate Integrate LHS by parts: 



Weak Form 

Recall the boundary conditions on u and v: 
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The weak form 

satisfies Neumann 

conditions 

automatically! 



Weak Form 
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Why is it “variational”? 

u and v are functions from an infinite-dimensional 

function space H 



We still haven’t done the “finite element method” yet, we have 

just restated the problem in the weak formulation. 

So what makes it “finite elements”? 

Solving the problem locally on elements 

Finite-dimensional approximation to an infinite-  dimensional 

space → Galerkin’s Method 

Galerkin’s Method 
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Galerkin’s Method 

So what have we done so far? 

1) Reformulated the problem in the weak form. 

2) Chosen a finite-dimensional approximation to the solution. 

Recall weak form written in terms of residual: 

0
0 00

02

2









   

L

i

L

ii

L

dxbvdxvdxp
dx

ud
RR

This is an L2 inner-product.  Therefore, the residual is orthogonal 

to our space of basis functions.  “Orthogonality Condition” 



Orthogonality Condition 
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The residual is orthogonal to our space of basis functions: 
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Therefore, given some space of approximate functions Hh, we are 

finding uh that is closest (as measured by the L2 inner product) to 

the actual solution u. 



Discretization and Basis Functions 

Let’s continue with our sample problem.  Now we discretize our 

domain.  For this example, we will discretize x=[0, L] into 2 

“elements”. 

0 h 2h=L 

1Ω

2Ω

In 1-D, elements are segments.  In 2-D, they are triangles, tetrads, 

etc.  In 3-D, they are solids, such as tetrahedra.  We will solve the 

Galerkin problem on each element. 



Discretization and Basis Functions 

For a set of basis functions, we can choose anything.  For 

simplicity here, we choose piecewise linear “hat functions”. 

Our solution will be a linear combination of these functions. 
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Discretization and Basis Functions 

To save time, we can throw out φ1 a priori because, since in this 

example u(0)=0, we know that the coefficent c1 must be 0. 
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Basis Functions 
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Matrix Formulation 
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Solution 
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Solution 
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Notice the numerical solution is “interpolatory”, or nodally exact. 



Concluding Remarks 

•Because basis functions are compact, matrix K is typically 

tridiagonal or otherwise sparse, which allows for fast solvers that 

take advantage of the structure (regular Gaussian elimination is 

O(N3), where N is number of elements!).  Memory requirements 

are also reduced. 

•Continuity between elements not required.  “Discontinuous 

Galerkin” Method 


