Linear Programming

Operations Manayement - צrh Entition

Lecture Outline

- Model Formulation
- Graphical Solution Method
- Linear Programming Model
- Solution
- Solving Linear Programming Problems with Excel
- Sensitivity Analysis

Linear Programming (LP)

A model consisting of linear relationships representing a firm's objective and resource constraints

LP is a mathematical modeling technique used to determine a level of operational activity in order to achieve an objective, subject to restrictions called constraints

Types of LP

Linear Programming Model Type	OM Application
Aggregate Production Planning	Determines the resource capacity needed to meet demand over an immediate time horizon, including units produced, workers hired and fired and inventory. (See Chapter 13.)
Product Mix	Mix of different products to produce that will maximize profit or minimize cost given resource constraints such as material, labor, budget, etc.
Transportation	Logistical flow of items (goods or services) from sources to destinations, for example, truckloads of goods from plants to warehouses. (See Supplement 10.)
Transshipment	Flow of items from sources to destinations with intermediate points, for example shipping from plant to distribution center and then to stores. (See Supplement 10.)

Types of LP (cont.)

| Linear Programming
 Model Type | OM Application |
| :--- | :--- |$|$| Assignment | Assigns work to limited resources, called "Loading," for example, assigning
 jobs or workers to different machines. (See Chapter 16.) |
| :--- | :--- |
| Multiperiod Scheduling | Schedules regular and overtime production, plus inventory to carry over, to
 meet demand in future periods. |
| Blend | Determines "recipe" requirements, for example, how to blend different
 petroleum components to produce different grades of gasoline and other
 petroleum products. |
| Diet | Menu of food items that meets nutritional or other requirements, for
 example, hospital or school cafeteria menus. |
| Investment/Capital
 Budgeting | Financial model that determines amount to invest in different alternatives
 given return objectives and constraints for risk, diversity, etc., for example,
 how much to invest in new plant. facilities or equipment. |

Types of LP (cont.)

Linear Programming Model Type	OM Application
Data Envelopment Analysis (DEA)	Compares service units of the same type-banks, hospitals, schoolsbased on their resources and outputs to see which units are less productive or inefficient.
Shortest Route	Shortest routes from sources to destinations, for example, the shortest highway truck route from coast to coast.
Maximal Flow	Maximizes the amount of flow from sources to destinations, for example, the flow of work-in process through an assembly operation.
Trim-Loss	Determines patterns to cut sheet items to minimize waste, for example, cutting lumber, film, cloth, glass, etc.
Facility Location	Selects facility locations based on constraints such as fixed, operating, and shipping costs, production capacity, etc.
Set Covering	Selection of facilities that can service a set of other facilities, for example, the selection of distribution hubs that will be able to deliver packages to a set of cities.

LP Model Formulation

- Decision variables
- mathematical symbols representing levels of activity of an operation
- Objective function
- a linear relationship reflecting the objective of an operation
- most frequent objective of business firms is to maximize profit
- most frequent objective of individual operational units (such as a production or packaging department) is to minimize cost
- Constraint
- a linear relationship representing a restriction on decision making

LP Model Formulation (cont.)

Max/min

$$
z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}
$$

subject to:

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}(\leq,=, \geq) b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}(\leq,=, \geq) b_{2} \\
: \\
a_{m 1} x 1+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}(\leq,=, \geq) b_{m}
\end{array}\right.
$$

$\mathrm{x}_{\mathrm{j}}=$ decision variables
$b_{i}=$ constraint levels
$c_{j}=$ objective function coefficients
$\mathrm{a}_{\mathrm{ij}}=$ constraint coefficients

LP Model: Example

RESOURCE REQUIREMENTS

PRODUCT	Labor (hr/unit)	Clay (lb/unit)	Revenue (\$/unit)
Bowl	1	4	40
Mug	2	3	50

There are 40 hours of labor and 120 pounds of clay available each day

Decision variables
$x_{1}=$ number of bowls to produce
$x_{2}=$ number of mugs to produce

LP Formulation: Example

Maximize $Z=\$ 40 x_{1}+50 x_{2}$
Subject to

$$
\begin{aligned}
x_{1}+2 x_{2} & \leq 40 \mathrm{hr} & & \text { (labor constraint) } \\
4 x_{1}+3 x_{2} & \leq 120 \mathrm{lb} & & \text { (clay constraint) } \\
x_{1}, x_{2} & \geq 0 & &
\end{aligned}
$$

Solution is $x_{1}=24$ bowls $x_{2}=8$ mugs Revenue $=\$ 1,360$

Graphical Solution Method

1. Plot model constraint on a set of coordinates in a plane
2. Identify the feasible solution space on the graph where all constraints are satisfied simultaneously
3. Plot objective function to find the point on boundary of this space that maximizes (or minimizes) value of objective function

Graphical Solution: Example

Computing Optimal Values

$$
\begin{aligned}
& Z=\$ 50(24)+\$ 50(8)=\$ 1,360
\end{aligned}
$$

Extreme Corner Points

Objective Function

$$
\begin{aligned}
& { }^{x_{2}} 40 \mid \because 4 x_{1}+3 x_{2} \leq 120 \mathrm{lb} \\
& Z=70 x_{1}+20 x_{2} \\
& \text { Optimal point: } \\
& x_{1}=30 \text { bowls } \\
& x_{2}=0 \text { mugs } \\
& Z=\$ 2,100
\end{aligned}
$$

Minimization Problem

CHEMICAL CONTRIBUTION

Brand	Nitrogen (lb/bag)	Phosphate (lb/bag)
Gro-plus	2	4
Crop-fast	4	3

Minimize $Z=\$ 6 x_{1}+\$ 3 x_{2}$
subject to

$$
\begin{aligned}
2 x_{1}+4 x_{2} & \geq 16 \mathrm{lb} \text { of nitrogen } \\
4 x_{1}+3 x_{2} & \geq 24 \mathrm{lb} \text { of phosphate } \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Graphical Solution

Simplex Method

- A mathematical procedure for solving linear programming problems according to a set of steps
- Slack variables added to \leq constraints to represent unused resources
- $x_{1}+2 x_{2}+s_{1}=\square 40$ hours of labor
- $4 x_{1}+3 x_{2}+s_{2}=\square 120 \mathrm{lb}$ of clay
- Surplus variables subtracted from \geq constraints to represent excess above resource requirement. For example
- $2 x_{1}+4 x_{2} \geq \square 16$ is transformed into
- $2 x_{1}+4 x_{2}-s_{1}=\square 16$
- Slack/surplus variables have a 0 coefficient in the objective function
- $Z=\$ 40 x_{1}+\$ 50 x_{2}+0 s_{1}+0 s_{2}$

Solution Points with Slack Variables

Solution
 Points with Surplus
 Variables

Solving LP Problems with Excel

Solving LP Problems with Excel (cont.)

After all parameters and constraints have been input, click on "Solve."

Solving LP Problems with Excel （cont．）
 Z Microsoft Excel－Book1

	Eile Edit Yiew In	Fort	Iools Dat	ata Wind	Help			
		䍓以	$\cdots-18$	$\Sigma \bullet \stackrel{A}{Z} \downarrow$		\＃Arial		－${ }^{\text {B }}$
		旬匈 6	＊Reply wil	with ¢hanges	．．．End Review．．．			
	B12	$f_{x}=\mathrm{CA}^{*} \mathrm{~B}$	10＋D4＊B11					
	A	B	C	D	E	F	G	H
1	Highland Cra	ft Stor						
2								
3	Products：		Bowl	Mug				
4	Profit per unit		40	50				
5	Resources				Available	Usage	Left over	
6	labor（hr／unit）		1	2	40	40	0	
7	clay（lb／unit）		4	3	120	120	0	
8								
9	Production							
10	Bowls＝	24						
11	Mugs＝	8						
12	Profit＝	1360						
13								
14								

Sensitivity Analysis

【Microsoft Excel - Book1
娄 Eile Edit View Insert Format Iools Data Window Help

Sensitivity Range for Labor

Hours

Sensitivity Range for Bowls

