Simplex Problems

Chapter Topics

- Simplex Method
- Characteristics of Simplex Method
- Why we should study the Simplex Method?
- Summary of the Simplex Method
- Examples solved by conducting tabular method
- Linear programming models could be solved algebraically. The most widely used algebraic procedure for solving linear programming problem is called the Simplex Method. The simplex method is a generalpurpose linear-programming algorithm widely used to solve large scale problems. Although it lacks the intuitive appeal of the graphical approach, its ability to handle problems with more than two decision variables makes it extremely valuable for solving problems often encountered in production/operations management. Thus simplex method offers an efficient means of solving more complex linear programming problems.

Characteristics of Simplex Method

- In the simplex method, the computational routine is an iterative process. To iterate means to repeat; hence, in working toward the optimum solution, the computational routine is repeated over and over, following a standard pattern.
- Successive solutions are developed in a systematic pattern until the best solution is reached.
- Each new solution will yield a value of the objective function as large as or larger than the previous solution. This important feature assures us that we are always moving closer to the optimum answer. Finally, the method indicates when the optimum solution has been reached.
- Most real-life linear programming problems have more than two variables, so a procedure called the simplex method is used to solve such problems. This procedure solves the problem in an iterative manner, that is, repeating the same set of procedures time after time until an optimal solution is reached. Each iteration brings a higher value for the objective function so that we are always moving closer to the optimal solution.

The simplex method requires simple mathematical operations (addition, subtraction, multiplication, and division), but the computations are lengthy and tedious, and the slightest error can lead to a good deal of frustration. For these reasons, most users of the technique rely on computers to handle the computations while they concentrate on the solutions. Still, some familiarity with manual computations is helpful in understanding the simplex process. The student will discover that it is better not to use his/her calculator in working through these problems because rounding can easily distort the results. Instead, it is better to work with numbers in fractional form.

- It is important to understand the ideas used to produce solution. The simplex approach yields not only the optimal solution to the xi variables, and the maximum profit (or minimum cost) but valuable economic information as well.
- To be able to use computers successfully and to interpret LP computer print outs, we need to know what the simplex method is doing and why.
- We begin by solving a maximization problem using the simplex method. We then tackle a minimization problem.

Step 1. Formulate a LP model of the problem.
Step 2. Add slack variables to each constraint to obtain standard form.
Step 3. Set up the initial simplex tableau.
Step 4. Choose the nonbasic variable with the largest entry in the net evaluation row ($\mathrm{Cj}-\mathrm{Zj}$) to bring into the basis. This identifies the pivot (key) column; the column associated with the incoming variable.
Step 5. Choose as the pivot row that row with the smallest ratio of "bi/ aij", for aij >0 where j is the pivot column. This identifies the pivot row, the row of the variable leaving the basis when variable j enters.
Step 6. a). Divide each element of the pivot row by the pivot element.
b). According to the entering variable, find the new values for remaining variables.
Step 7. Test for optimality. If $\mathrm{Cj}-\mathrm{Zj} \leq 0$ for all columns, we have the optimal solution. If not, return to step 4.

A Furniture Ltd., wants to determine the most profitable combination of products to manufacture given that its resources are limited. The Furniture Ltd., makes two products, tables and chairs, which must be processed through assembly and finishing departments. Assembly has 60 hours available; Finishing can handle up to 48 hours of work.
Manufacturing one table requires 4 hours in assembly and 2 hours in finishing.
Each chair requires 2 hours in assembly and 4 hours in finishing. Profit is $\$ 8$ per table and $\$ 6$ per chair.

	Hours required for 1unit of product Chairs	Total hours available	
Assembly	4	2	60
Finishing	2	4	48
Profitper unit	$\$ 8$	$\$ 6$	

Tabular solution for Example 1/1

Stated algebraically, the Ltd, problem is
Maximise! Profit $Z=8 X_{1}+6 \mathrm{X}_{2}$
Subject to:
Assembly $4 X_{1}+2 X_{2} \leq 60$
Finishing $\quad 2 X_{1}+4 X_{2} \leq 48$
All variables ≥ 0

* The first step is to convert the inequalities into equations.

The best combination of tables and chairs may not necessarily use all the time available in each department. We must therefore add to each inequality a variable, which will take up the slack, i.e. the time not used in each department. This variable is called a slack variable.

By adding the slack wariables we conwert the constraint inequalities in the problem into equations. The slack variable in each department takes on whatever value is required to make the equation relationship hold.
\therefore The final form is
Maximize

$$
\text { Profit } Z=8 X_{1}+6 X_{2}+0 S_{1}+0 S_{2}
$$

Subject to

$$
\begin{aligned}
& 4 X_{1}+2 X_{2}+S_{1}=60 \\
& 2 X_{1}+4 X_{2}+S_{2}=60
\end{aligned}
$$

$$
\text { All variables } \geq 0
$$

Tabular solution for Example 1/2

* The $2^{\text {nd }}$ step is to put the equations into tabular form, called tableaus.

The simplest starting solution is to make no tables or chairs, have all unused time and earn no profit. This solution is technically feasible but not financially attractive. (Because the variables X_{1} and X_{2} do not appear in the mix, they are equal to zero.)

To find the profit for each solution and to determine whether the solution can be improved upon, we need to add two more rows to the initial simplex tableau: a Z_{j} row and a $C_{j}-Z_{j}$ row.

Column $Z_{i}=$ Total profit from this particular solution

Tabular solution for Example 1/3

The four values for $Z_{d i}$ under the variable columns (all 0 物 are the amounts by which profit would be reduced if 1 unit of any of the variables were added to the mix.

Cj			$\$ 8$	6	0	0	
	Product mix	Quantity	X_{1}	X_{2}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	
$\$ 0$	$\mathrm{~S}_{1}$	60	4	2	1	0	
0	$\mathrm{~S}_{2}$	48	2	4	0	1	
	Zj	$\$ 0$	0	0	0	0	
	$\mathrm{Cj}-\mathrm{Zj}$		8	6	0	0	

Max
Z_{i} represents the gross profit given up by adding 1 unit of this variable into the current solution (profit loss per unit). $\mathrm{C}_{\mathrm{j}}-Z_{j}$ is net profit from the introduction 1 unit of each variable into the solution.

By examining the numbers in the $C_{j}-Z_{j}$ row we can see that total profit can be increased by 48 for each unit of X_{1} (tables). Positive number indicates that profits can be improved for each unit added. We select the largest positive value. Max $C_{j}-Z_{j}$ value showing the variable that should be added, replacing one of the variables present in the mix.

Tabular solution for Example 1/4

\because The next step is to determine which variable will be replaced.
This is done in the following manner:
Divide quantity column values by their corresponding numbers in the maximum (optimum) column and select the row with the smallest nonnegative ratio as the row to be replaced.
S_{1} row $60 / 4=15$ units of Table $\left(X_{1}\right) \rightarrow$ minimum replaced row.
S2 row $48 / 4=24$ units of Table (X_{1})
$1^{\text {st }}$ Simplex Tableau

Cj			$\$ 8$	6	0	0	
	Product mix	Quantity b_{i}	X_{1}	X_{2}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~b}_{\mathrm{i}} / \mathrm{a}_{\mathrm{ij}}$
0	$\mathrm{~S}_{1}$	60	4	2	1	0	$60 / 4=15$
0	$\mathrm{~S}_{2}$	48	2	4	9	1	$48 / 2=24$
	Zj	$\$ 0$	$\$ 0$	0	0	0	Intersectional elements
	$\mathrm{Cj}-\mathrm{Zj}$		8	6	0	0	(key \#)

Tabular solution for Example 1/5

$\mathrm{a}_{\mathrm{iji}}=$ coefficient associated with variable j in the constraint i

For $2^{\text {nd }}$ Simplex Tableau

$$
\mathrm{X}_{1}=60 / 4=15, \quad 4 / 4=1, \quad 2 / 4=1 / 2, \quad 1 / 4=1 / 4, \quad 0 / 4=0
$$

Thus new X_{1} row should be $(15,1,1 / 2,1 / 4,0)$,
The new values for remaining rows:
[elements in old row] - [key \#] x [corresponding elements in replacing row] = new row

Elements in old row	-	key \#	x	replacing row	$=$	new row
48	-	2	x	15	$=$	18
2	-	2	x	1	$=$	0
4	-	2	x	$1 / 2$	$=$	3
0	-	2	x	$1 / 4$	$=$	$-1 / 2$
1	-	2	x	0	$=$	1

The computation of Z_{j} row for $2^{\text {nd }}$ tableau is as follows.
$\left.\begin{array}{l}Z_{\text {i for }} \mathrm{X}_{1} \quad 8 \times 1+0(0)=8 \\ \mathrm{Z}_{\mathrm{i}} \text { for } \mathrm{X}_{2} 8(1 / 2)+0(3)=4 \\ \mathrm{Z}_{\mathrm{i}} \text { for } \mathrm{S}_{1} 8(1 / 4)+0(-1 / 2)=2 \\ \mathrm{Z}_{\mathrm{i}} \text { for } \mathrm{S}_{2} 8(0)+0(1)=0\end{array}\right\} \quad \begin{aligned} & \\ & 8(0)+0 \text { fit given up by introducing } 1 \text { unit of these }\end{aligned}$

$$
Z_{i}(\text { total profit })=8(15)+0(18)=\$ 120
$$

Tabular solution for Example 1/6

$2^{\text {nd }}$ Simplex Tableau

Cj			\$8	6	0	0	
	Product mix	Quantity b_{i}	X_{1}	X_{2}	S_{1}	S_{2}	$\mathrm{b}_{\mathrm{i}} / \mathrm{ajij}$
\$8	X_{1}	15	1	1/2	1/4	0	$15 / 1 / 2=30$
0	S_{2}	18	0	3	-1/2	1	$18 / 3=6$ \rightarrow minlleaving
	Z_{j}	\$120	\$8	4	2	0	
	$\mathrm{C}_{\mathrm{j}}-\mathrm{Z}_{\mathrm{i}}$		\$0	2	-2	0	

X_{2} will enter in the product mix and S_{2} is leaving.
New X_{2} values: $18 / 3=6,0 / 3=0,3 / 3=1,-1 / 2 / 3=-1 / 6,1 / 3=1 / 3$
Thus new X_{2} (replacing row) values $=6,0,1,-1 / 6,1 / 3$ (Assumes same row position as the replaced row)

Tabular solution for Example 1/7

New Values for X_{1} :

Elements in old X_{1} fow	-	key\#	x	replacing row		$=$	new X_{1} row
15	-	$1 / 2$	x	6	$=$	12	
1	-	$1 / 2$	x	0	$=$	1	
$1 / 2$	-	$1 / 2$	x	1	$=$	0	
$1 / 4$	-	$1 / 2$	x	$-1 / 6$	$=$	$1 / 3$	
0	-	$1 / 2$	x	$1 / 3$	$=$	$-1 / 6$	

New Z_{i} values:

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{j}}(\text { total } p \text { profit })=8(12)+6(6)=\$ 132 \\
& \mathrm{Z}_{\mathrm{j}} \text { for } \mathrm{X}_{1} \quad 8(1)+6(0)=8 \\
& \mathrm{Z}_{\mathrm{j}} \text { for } \mathrm{X}_{2} 8(0)+6(1)=6 \\
& \mathrm{Z}_{\mathrm{j}} \text { for } \mathrm{S}_{1} 8(1 / 3)+6(-1 / 6)=5 / 3 \\
& \mathrm{Z}_{\mathrm{j}} \text { for } \mathrm{S}_{2} 8(-1 / 6)+6(1 / 3)=2 / 3
\end{aligned}
$$

Tabular solution for Example 1/8

$3^{\text {3d }}$ Simplex Tableau

Cj			$\$ 8$	6	0	0	
	Product mix	Quantity b_{i}	X_{1}	X_{2}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	
$\$ 8$	X_{1}	12	1	0	$1 / 3$	$-1 / 6$	
6	X_{2}	6	0	1	$-1 / 6$	$1 / 3$	
	Z_{j}	$\$ 132$	$\$ 8$	6	$5 / 3$	$2 / 3$	
	$\mathrm{C}_{\mathrm{i}}-\mathrm{Z}_{\mathrm{j}}$		$\$ 0$	0	$-5 / 3$	$-2 / 3$	

There is no positive " $\mathrm{C}_{\mathrm{j}}-Z_{\mathrm{j}}$ " value, no further profit improvement is possible. Thus the optimum solution is obtained. Profit will be maximized by making 12 tables and 6 chairs and having no unused time in either department (because slack variables do no appear in the product-mix column and are equal to zero). Optimum profit is $\$ 132$ 。

Verification:

Objective function

$$
\begin{aligned}
& Z_{\mathrm{i}}=8 \mathrm{X}_{1}+6 \mathrm{X}_{2}+0\left(\mathrm{~S}_{1}+\mathrm{S}_{2}\right) \\
& \mathrm{Z}_{\mathrm{i}}=8(12)+6(6)+0=\$ 132
\end{aligned}
$$

Constraints:
Assembly $4 \mathrm{X}_{1}+2 \mathrm{X}_{2} \leq 60 \rightarrow 4(12)+2(6) \leq 60 \rightarrow 60 \leq 60$
Finishing $2 \mathrm{X}_{1}+4 \mathrm{X}_{2} \leq 48 \rightarrow 2(12)+4(6) \leq 48 \rightarrow 48 \leq 48$

PAR Inc. produces golf equipment and decided to move into the market for standard and deluxe golf bags. Each golf bag requires the following operations:
Cutting and dyeing the material,
Sewing,
Finishing (inserting umbrella holder, club separators etc.), Inspection and packaging.
Each standard golf-bag will require $7 / 10 \mathrm{hr}$. in the cutting and dyeing department, $1 / 2$
hr . in the sewing department, 1 hr . in the finishing department and $1 / 10 \mathrm{hr}$. in the inspection \& packaging department.
Deluxe model will require 1 hr . in the cutting and dyeing department, $5 / 6 \mathrm{hr}$. for sewing, $2 / 3 \mathrm{hr}$. for finishing and $1 / 4 \mathrm{hr}$. for inspection and packaging The profit contribution for every standard bag is 10 MU and for every deluxe bag is 9 MU.
In addition the total hours available during the next 3 months are as follows:

Cutting \& dyeing dept	630 hrs
Sewing dept	600 hrs
Finishing	708 hrs
Inspection \& packaging	135 hrs

The company's problem is to determine how many standard and deluxe bags should be produced in the next 3 months?

Let $X_{1}=$ number of standard bags
$\mathrm{X}_{2}=$ number of deluxe bags
$Z=$ the total profit contribution
Objective function:

$$
\text { Max! } Z=10 X_{1}+9 X_{2}
$$

Subject to constraints

$$
\begin{array}{ll}
7 / 10 \mathrm{X}_{1}+1 \mathrm{X}_{2} \leq 630 & \text { cutting and dying } \\
1 / 2 \mathrm{X}_{1}+5 / 6 \mathrm{X}_{2} \leq 600 & \text { sewing } \\
1 \mathrm{X}_{1}+2 / 3 \mathrm{X}_{2} \leq 708 & \text { finishing } \\
1 / 10 \mathrm{X}_{1}+1 / 4 \mathrm{X}_{2} \leq 135 & \text { inspection \& packaging } \\
\mathrm{X}_{1} \geq 0 \\
\mathrm{X}_{1} \geq 0 \quad \text { Nonnegative constraints }
\end{array}
$$

In linear programming terminology, any unused or idle capacity for a \leq constraint is referred to as the slack associated with the constraint. Often variables, called slack variables, are added to the formulation of a linear programming problem to represent the slack or idle capacity. Unused capacity makes no contribution to profit; thus slack variables have coefficients of zero in the objective function. Whenever a linear program is written in a form with all constraints expressed as equalities, it is said to be written in standard form.
After the addition of slack variables to the mathematical statement, the mathematical model becomes|

Max! $\quad 10 \mathrm{X}_{1}+9 \mathrm{X}_{2}+0 \mathrm{~S}_{1}+0 \mathrm{~S}_{2}+0 \mathrm{~S}_{3}+0 \mathrm{~S}_{4}$
Subject to

$$
\begin{array}{rlrl}
7 / 10 \mathrm{X}_{1}+1 \mathrm{X}_{2}+1 \mathrm{~S}_{1} & =630 \\
1 / 2 \mathrm{~K}_{1}+5 / 6 \mathrm{X}_{2} & +1 \mathrm{~S}_{2} & =600 \\
1 \mathrm{X}_{1}+2 / 3 \mathrm{X}_{2} & & =6 \mathrm{~S}_{3} & =708 \\
1 / 10 \mathrm{X}_{1}+1 / 4 \mathrm{X}_{2} & & +1 \mathrm{~S}_{4} & =135 \\
& & \mathrm{X}_{1 . \times} \mathrm{X}_{2}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4} \geq 0
\end{array}
$$

Tabular solution for Example 2/1

Initial Tableau

Cj			$\begin{gathered} 10 \\ \mathrm{MU} \end{gathered}$	$\begin{gathered} 9 \\ M U \end{gathered}$	$\begin{gathered} 0 \\ M U \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{MU} \end{gathered}$	$\begin{gathered} 0 \\ M U \end{gathered}$	$\begin{gathered} 0 \\ M U \end{gathered}$	
	Product mix	Quantity b_{i}	X_{1}	X_{2}	S_{1}	S_{2}	S_{3}	S_{4}	$\mathrm{b}_{\mathrm{i}} / \mathrm{a}_{\mathrm{ij}}$
$\begin{gathered} 0 \\ \mathrm{MU} \end{gathered}$	S_{1}	630	7/10	1	1	0	0	0	$630 / 7 / 10=900$
$\begin{gathered} 0 \\ \mathrm{MU} \end{gathered}$	S_{2}	600	1/2	5/6	0	1	0	0	$600 / 1 / 2=1200$
$\begin{gathered} 0 \\ \mathrm{MU} \end{gathered}$	S_{3}	708	1	$2 / 3$	0	0	1	0	$\begin{aligned} & 708 / 1=708 \\ & (\text { min leaving }) \end{aligned}$
$\begin{gathered} 0 \\ M U \end{gathered}$	S_{4}	135	1/10	1/4	0	0	0	1	$\begin{aligned} & 135 / 1 / 10= \\ & 1350 \end{aligned}$
	Zj	0 MU	$\begin{gathered} 0 \\ \mathrm{MU} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{MU} \end{gathered}$	$\begin{gathered} 0 \\ M U \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{MU} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{MU} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{MU} \end{gathered}$	
	$\mathrm{Cj}-\mathrm{Zj}$		$\begin{gathered} 10 \\ \mathrm{MUU} \end{gathered}$	$\begin{gathered} 9 \\ \mathrm{MU} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{MU} \end{gathered}$				

For the $2^{\text {nd }}$ Simplex Tableau
$708 / 1=708,1 / 1=1,2 / 3 / 1=2 / 3,0,0,1,0$
\therefore new X_{1} value are: $708,1,2 / 3,0,0,1,0$

Tabular solution for Example 2/2

Elements in		key \#		new Xrow	=	new S_{2} row
600	-	1/2	x	708	=	246
1/2	-	1/2	x	1	=	0
5/6	-	1/2	x	$2 / 3$	=	1/2
0	-	1/2	x	0	=	0
1	-	1/2	x	0	=	1
0	-	1/2	x	1	$=$	-1/2
0	-	1/2	x	0	$=$	0

Tabular solution for Example 2/3

$2^{\text {nd }}$ Tableau

国

Ci_{i}			$\begin{gathered} 10 \\ M U T \end{gathered}$	$\begin{gathered} 9 \\ M U T \end{gathered}$	$\begin{gathered} 0 \\ M U T \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{MU} \end{gathered}$	$\begin{gathered} 0 \\ M U T \end{gathered}$	$\begin{gathered} 0 \\ M U \end{gathered}$	
	Product mix	$\underset{b_{i}}{\text { Quantity }}$	X_{1}	X_{2}	S_{1}	S_{2}	S_{3}	S_{4}	$\mathrm{b}_{\mathrm{i}} / \mathrm{a}_{\mathrm{ij}}$
$\begin{gathered} 0 \\ M U T \end{gathered}$	S_{1}	134.4	0	8/15	1	0	-7/10	0	$\begin{aligned} & 252 \\ & \text { (min } \\ & \text { leaving) } \end{aligned}$
$\begin{gathered} 0 \\ M U T \end{gathered}$	S_{2}	246	0	1/2	0	1	-1/2	0	492
$\begin{gathered} 10 \\ M U T \end{gathered}$	X_{1}	708	1	$2 / 3$	0	0	1	0	1062
$\begin{gathered} \mathrm{O} \\ \mathrm{M} \mathrm{U} \end{gathered}$	S_{4}	64.2	0	11/60	0	0	$-1 / 10$	1	3852/11
	Z_{i}	7080 MUJ	10	20/3	0	0	10	0	
	$\mathrm{C}_{i}-\mathrm{Z}_{\mathrm{i}}$		0	$7 / 3$	0	0	-10	0	

New X, values are: $\quad 134.4=252.0 .1$. $15 / 8.0 .-21 / 16.0$

Tabular solution for Example 2/4

Elements in old Sx row		-	Eey \#	x	new $\mathrm{X}_{\text {drem }}$	=	new S2row
246	-		$1 / 2$	x	252	=	120
0	-		$1 / 2$	x	0	=	0
$1 / 2$	-		$1 / 2$	x	1	$=$	0
0	-		$1 / 2$	x	$15 / 8$	=	-15/16
1	-		$1 / 2$	x	0	=	1
-1/2	-		$1 / 2$	x	-21/16	=	$5 / 32$
0	-		$1 / 2$	x	0	=	0
Elements in old X_{1} tow		-	key \#	x	new Throw	=	new $\mathrm{X}_{\underline{1}}$ row
708	-		$2 / 3$	x	252	=	540
1	-		$2 / 3$	x	0	=	1
$2 / 3$	-		$2 / 3$	x	1	=	0
0	-		$2 / 3$	x	$15 / 8$	=	-5/4
0	-		$2 / 3$	x	0	=	0
1	-		$2 / 3$	x	$-21 / 16$	$=$	$15 / 8$
0	-		$2 / 3$	x	0	=	0
Elements in old S_{4} row		-	Eey \#	X	new $\mathrm{X}_{\text {arow }}$	=	new S_{4} row
64.2	-		11.60	x	252	=	18
0	-		11.60	x	0	=	0
$11 / 60$	-		11.60	x	1	=	0
0	-		11.60	x	$15 / 8$	$=$	-11/32
0	-		$11 / 60$	x	0	=	0
-1/10	-		11.60	x	-21/10	=	45/320
1	-		$11 / 60$	x	0	$=$	1

Tabular solution for Example 2/5

$3^{\text {rd }}$ Tableau

Cj			$\begin{gathered} 10 \\ \mathrm{MU} \end{gathered}$	$\begin{gathered} 9 \\ \mathrm{MU} \end{gathered}$	$\begin{gathered} 0 \\ M U \end{gathered}$			
	Product mix	$\underset{b_{i}}{\substack{\text { Quantity }}}$	X_{1}	X_{2}	S_{1}	S_{2}	S_{3}	S_{4}
$\begin{gathered} 9 \\ \mathrm{MU} \end{gathered}$	X_{2}	252	0	1	15/8	0	-21/16	0
$\begin{gathered} 0 \\ \mathrm{MU} \end{gathered}$	S_{2}	120	0	0	-15/16	1	5/32	0
$\begin{gathered} 10 \\ \mathrm{MU} \end{gathered}$	X_{1}	540	1	0	-5/4	0	15/8	0
$\begin{gathered} 0 \\ \mathrm{MU} \end{gathered}$	S_{4}	18	0	0	-11/32	0	45/320	1
	Zj	$\begin{aligned} & 7668 \\ & \mathrm{MU} \end{aligned}$	10	9	$\begin{gathered} 135 / 8+(5 / 4) \\ =35 / 8 \end{gathered}$	0	$\begin{gathered} -189 / 16+ \\ 300 / 16=111 / 16 \end{gathered}$	0
	$\mathrm{Cj}-\mathrm{Zj}$		0	0	-35/8	0	-111/16	0

There is no positive $\mathrm{Cj}-\mathrm{Zj}$ value in the simplex tableau. Therefore no further profit improvement is possible. Thus the optimum solution is obtained
$>$ Thus: Standard bag production $\left(X_{1}\right)=540$ bags .
Deluxe bag production (X_{2}) $=252$ bags .
$>$ Maximum profit $=Z=\$ 10(540)+\$ 9(252)=\$ 7668$
$>$ Unused hours in Sewing department $=120$ hours
Inspection and packaging department $=18$ hours

High Tech industries import components for production of two different models of personal computers, called deskpro and portable. High Tech's management is currently interested in developing a weekly production schedule for both products. The deskpro generates a profit contribution of $\$ 50 /$ unit, and portable generates a profit contribution of $\$ 40 /$ unit. For next week's production, a max of 150 hours of assembly time is available. Each unit of deskpro requires 3 hours of assembly time. And each unit of portable requires 5 hours of assembly time.
High Tech currently has only 20 portable display components in inventory; thus no more than 20 units of portable may be assembled. Only 300 sq . feet of warehouse space can be made available for new production. Assembly of each Deskpro requires $8 \mathrm{sq} . \mathrm{ft}$. of warehouse space, and each Portable requires 5 sq . ft. of warehouse space.

	X_{1} - Deskpro	X_{2} - Portable	Capacity
Assembly line	3	5	150
Portable Ass	-	1	20
Space	8	5	300
Profit Cont.	$\$ 50$ iunit	$\$ 40$ unit	

Tabular solution for Example 3/1

	$\mathrm{X}_{1}-$ Deskpro	X_{2} - Portable	Capacity
Assembly line	3	5	150
Portable Ass	-	1	20
Space	8	5	300
Profit Cont.	$\$ 50$ /unit	$\$ 40$ /unit	

$\mathrm{X}_{1}=$ number of units of the Deskpro $\quad \mathrm{X}_{2}=$ number of units of the Portable Objective Function: Max! $\mathrm{Z}=50 \mathrm{X}_{1}+40 \mathrm{X}_{2}$
Subject to :

$$
\begin{aligned}
3 \mathrm{X}_{1}+5 \mathrm{X}_{2} \leq 150 & \text { Assembly time } \\
1 \mathrm{X}_{2} \leq 20 & \text { Portable display } \\
8 \mathrm{X}_{1}+5 \mathrm{X}_{2} \leq 300 & \text { Warehouse capacity } \\
\mathrm{X}_{1}, \mathrm{X}_{2} \geq 0 &
\end{aligned}
$$

Adding a slack variable to each of the constraints permits us to write the problem in standard form:

Objective Function: \quad Max! $Z=50 X_{1}+40 X_{2}+0 S_{1}+0 S_{2}+0 S_{3}$ Subject to:

$$
\begin{aligned}
& 3 \mathrm{X}_{1}+5 \mathrm{X}_{2}+1 \mathrm{~S}_{1}=150 \\
& 1 \mathrm{X}_{2}+1 \mathrm{~S}_{2} \\
& 8 \mathrm{X}_{1}+5 \mathrm{X}_{2}=20 \\
&+1 \mathrm{~S}_{3}=300 \\
& \mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3} \geq
\end{aligned}
$$

Tabular solution for Example 3/2

Initial Tableau

C_{i}			$\$ 50$	$\$ 40$	$\$ 0$	$\$ 0$	$\$ 0$	
	Product mix	Quantity bi	X_{1}	X_{2}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~b}_{\mathrm{i}} / \mathrm{a}_{\mathrm{ij}}$
$\$ 0$	$\mathrm{~S}_{1}$	150	3	5	1	0	0	$150 / 3=50$
$\$ 0$	$\mathrm{~S}_{2}$	20	0	1	0	1	0	--
$\$ 0$	$\mathrm{~S}_{3}$	300	8	5	0	0	1	$300 / 8=37.5$ (min. 1eaving)
	Z_{i}	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	$\$ 0$	
	$\mathrm{C}_{\mathrm{j}}-Z_{\mathrm{i}}$		$\$ 50$	$\$ 40$	$\$ 0$	$\$ 0$	$\$ 0$	

Max. (entering)
New X_{1} value: $300 / 8=37.5,8 / 8=1,5 / 8,0,0,1 / 8$

Old S 1 row	-	key \#	x	new X_{1} row	=	new S 1 row
150	-	3	x	75/2	=	37.5
3	-	3	x	1	=	0
5	-	3	x	5/8	=	25/8
1	-	3	x	0	=	1
0	-	3	x	0	=	0
0	-	3	x	1/8	=	-3/8
Old S 2row $^{\text {row }}$	-	key \#	x	new X_{1} row	$=$	new S_{2} row
20	-	0	x	$75 / 2$	=	20
0	-	0	x	1	$=$	0
1	-	0	x	$5 / 8$	=	1
0	-	0	x	0	=	0
1	-	0	x	0	=	1
0	-	0	x	1/8	=	0

Tabular solution for Example 3/3

Ci			\$50	\$40	\$0	\$0	\$0	
	Product mix	Quantity bi	X_{1}	X_{2}	S_{1}	S_{2}	S_{3}	$\mathrm{b}_{\mathrm{i}} / \mathrm{a}_{\mathrm{ij}}$
\$0	S_{1}	75/2	0	25/8	1	0	-3/8	$75 / 2 / 25 / 8=12$ (min leaving)
\$0	S_{2}	20	0	1	0	1	0	$20 / 1=20$
\$50	X_{1}	75/2	1	$5 / 8$	0	0	1/8	$75 / 2 / 5 / 8=60$
	Zj	\$1875	\$50	\$250/8	\$0	\$0	\$50/8	
	$\mathrm{Cj}-\mathrm{Zj}$		\$0	\$70/8	\$0	\$0	\$-50/8	

New X_{2} values: $12,0,1,8 / 25,0,-3 / 25$

old S2row	-	key \#	x	new X_{2} row	$=$	new S_{2} row
20	-	,	x	12	=	8
0	-	1	x	0	=	0
1	-	1	x	1	$=$	0
0	-	1	x	$8 / 25$	$=$	-8/25
1	-	1	x	0	$=$	1
0	-	1	x	-3/25	=	3/25
old X_{1} row	-	key \#\#	x	new X_{2} row	new X_{1} row	
75/2	-	5/8	x	12	$=$	30
1	-	5/8	x	0	$=$	1
$5 / 8$	-	5/8	x	1	=	0
0	-	5/8	x	$8 / 25$	$=$	-1/5
0	-	5/8	x	0	$=$	0
1/8	-	5/8	x	-3/25	=	1/5

Tabular solution for Example 3/3

$3^{\text {nd }}$ Tableau

Cj		$\$ 50$	$\$ 40$	$\$ 0$	$\$ 0$	$\$ 0$	
	Product mix	Quantity Bi	X_{1}	X_{2}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$
$\$ 40$	X_{2}	12	0	1	$8 / 25$	0	$-3 / 25$
$\$ 0$	$\mathrm{~S}_{2}$	8	0	0	$-8 / 25$	1	$3 / 25$
$\$ 50$	X_{1}	30	1	0	$-1 / 5$	0	$1 / 5$
	Z_{j}	$\$ 1980$	$\$ 50$	$\$ 40$	$\$ 14 / 5$	$\$ 0$	$\$ 26 / 5$
	$\mathrm{C}_{\mathrm{j}}-\mathrm{Z}_{\mathrm{j}}$.		$\$ 0$	$\$ 0$	$\$-14 / 5$	$\$ 0$	$\$-26 / 5$

The optimal solution to a linear programming problem has been reached when all of the entries in the net evaluation row $C_{j}-Z_{j}$ are zero or negative. In such cases, the optimal solution is the current basic feasible solution.

Thus:

$$
\begin{aligned}
& \text { Units of Deskpro production }\left(X_{1}\right)=30 \text { units } \\
& \text { Units of Portable production }\left(X_{2}\right)=12 \text { units } \\
& \mathrm{S}_{2}=8 \text { units }
\end{aligned}
$$

Management should note that there would be eight unused Portable display units. Maximum profit is $\$ 1980$.

Tableau Form : The Special Case

- Obtaining tableau form is somewhat more complex if the LP contains \geq constraints, = constraints, and/or "-ve" right-hand-side values. Here we will explain how to develop tableau form for each of these situations.

Tabular solution for Example 4/1

- Suppose that in the high-tech industries problem management wanted to ensyre that the combined total production for both models would be at least 25 units.
- Thus,

Objective Function $\quad \mathrm{Max} Z=50 \mathrm{X}_{1}+40 \mathrm{X}_{2}$
Subjective to: $3 \mathrm{X}_{1}+5 \mathrm{X}_{2} \leq 150$ Assembly

$1 X_{1}$	≤ 20	Portable display
$8 X_{1}+5 X_{2} \leq 300$	Warehouse space	
production $1 X_{1}+1 X_{2} \geq 25$	Min. total	
	$X_{1}, X_{2} \geq 0$	

Tabular solution for Example 4/2

First, we use three slack variables and one surplus variable to write the problem in std. Form.
\Rightarrow Max $Z=50 X_{1}+40 X_{2}+0 S_{1}+0 S_{2}+0 S_{3}+0 S_{4}$
\rightarrow Subject to $3 X_{1}+5 X_{2}+1 S_{1}=150$

$$
\begin{array}{ll}
1 X_{2}+1 S_{2} & =20 \\
8 X_{1}+5 X_{2} & +1 S_{3}=300 \\
1 X_{1}+1 X_{2} & -1 S_{4}=25
\end{array}
$$

All variables ≥ 0
For the initial tableau $X_{1}=0$

$$
X_{2}=0
$$

$$
\begin{array}{cl}
S_{1}=150 & S_{2}=20 \\
S_{3}=300 & S_{4}=-25
\end{array}
$$

Tabular solution for Example 4/3

- Clearly this is not a basic feasible solution since S4 $=-25$ violates the nonnegativity requirement.
\therefore We introduce new variable called ARTIFICIAL VARIABLE.
- Artificial variables will be eliminated before the optimal solution is reached. We assign a very large cost to the variable in the objective function.
\therefore Objective function
$50 X_{1}+40 X_{2}+0 S_{1}+0 S_{2}+0 S_{3}+0 S_{4}-M A_{4}$

Tabular solution for Example 4/4

Initial Tableau

C_{j}			50	40	0	0	0	0	-M	
	Product mix	Quantit bi	X_{1}	X_{2}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~A}_{4}$	$\mathrm{~b}_{\mathrm{i}} / \mathrm{a}_{\mathrm{ij}}$
0	$\mathrm{~S}_{1}$	150	3	5	1	0	0	0	0	$150 / 3=50$
0	$\mathrm{~S}_{2}$	20	0	1	0	1	0	0	0	--
0	$\mathrm{~S}_{3}$	300	8	5	0	0	1	0	0	$300 / 8=37.5$
-M	A_{4}	25	1	1	0	0	0	-1	1	25
										Min. leaving
	Z_{j}	-25 M	-M	-M	0	0	0	M	-M	
	$\mathrm{C}_{\mathrm{j}}-\mathrm{Z}_{\mathrm{j}}$		$50+\mathrm{M}$	$40+\mathrm{M}$	0	0	0	-M	0	

Max. (Entering)
New X_{1} values $=25,1,1,0,0,0,-1,1$

Tabular solution for Example 4/5

Sldsitow	-	1-ey ${ }^{\text {\# }}$	x	mew XI_{1} walues	$\underline{=}$	trew Sliow
150	-	3	X	25	=	75
3	-	3	x	1	=	0
5	-	3	X	1	=	2
1	-	3	x	0	=	1
0	-	3	X	0	=	0
0	-	3	x	0	=	0
0	-	3	X	-1	=	3
0	-	3	x	1	=	-3
S1dS2 HOw^{6}	-	1-Ey 苼	x	mewt Pavelupes	=	HEW ST HOW
20	-	0	x	25	=	20
0	-	0	x	1	=	0
1	-	0	x	1	=	1
0	-	0	X	0	=	0
1	-	0	x	0	=	1
0	-	0	\%	0	=	0
0	-	0	x	-1	=	0
0	-	0	x	1	=	0
Q1dS3 row	-	1-ey \#	z	Hew Xovalues	$\overline{=}$	new S3 towr
300	-	8	x	25	=	10
8	-	8	X	1	=	0
5	-	8	x	1	=	-3
0	-	8	X	0	=	0
0	-	8	x	0	=	0
1	-	8	x	0	=	1
0	-	8	X	-1	=	8
0	-	8	\%	1	=	-8

Tabular solution for Example 4/6

$2^{\text {nd }}$ Tableau

Cj			\$50	40	0	0	0	0	
	Prodt mix	Quant b_{i}	X_{1}	X_{2}	S_{1}	S_{2}	S_{3}	S_{4}	$\mathrm{b}_{\mathrm{i}} / \mathrm{a}_{\mathrm{ij}}$
\$0	S_{1}	75	0	2	1	0	0	3	75/3=25
0	S_{2}	20	0	1	0	1	0	0	--
0	S_{3}	100	0	-3	0	0	1	8	$100 / 8=12.5$ Min,leaving
50	X_{1}	25	1	1	0	0	0	-1	--
	Z_{j}	\$1250	50	50	0	0	0	-50	
	$\mathrm{C}_{\mathrm{j}}-\mathrm{Z}_{\mathrm{j}}$		0	-10	0	0	0	50	

$$
\text { new } S 4 \text { values : } 100 / 8=25 / 2,0,-3 / 8,0,0,1 / 8,1
$$

Max. (Entering)

Tabular solution for Example 4/7

- IMPORTANT!!
- Since A4 is an artificial variable that was added simply to obtain an initial basic feasible solution, we can drop its associated column from the simplex tableau.
- Indeed whenever artificial variables are used, they can be dropped from the simplex tableau as soon as they have been eliminated from the basic feasible solution.

Tabular solution for Example 4/8

Old S ${ }_{1}$ row	-	key \#	x	new S_{4} values	$=$	new S_{1} row
75	-	3	x	25/2	$=$	75/2
0	-	3	x	0	=	0
2	-	3	x	-3/8	=	25/8
1	-	3	x	0	=	1
0	-	3	x	0	=	0
0	-	3	x	1/8	=	-3/8
3	-	3	x	1	=	0
Old S ${ }_{2}$ row	-	key \#	x	new S_{4} values	$=$	new S_{2} row
20	-	0	x	25/2	=	20
0	-	0	x	0	=	0
1	-	0	x	-3/8	=	1
0	-	0	x	0	=	0
1	-	0	x	0	=	1
0	-	0	x	1/8	=	0
0	-	0	x	1	=	0
Old X X_{1} row	-	key \#	x	new S_{4} values	=	new X_{1} row
25	-	-1	x	25/2	=	75/2
1	-	-1	x	0	=	1
1	-	-1	x	-3/8	=	5/8
0	-	-1	x	0	=	0
0	-	-1	x	0	=	0
0	-	-1	x	1/8	=	1/8
-1	-	-1	x	1	=	0

Tabular solution for Example 4/9

One more iteration is required. This time $\mathbf{X} 2$ comes into the solution and S1 is eliminated. After performing this iteration, the following simplex tableau shows that the optimal solution has been reached.

Tabular solution for Example 4/10

C_{i}			50	40	0	0	0	0
	Product mix	Quantity b_{i}	X_{1}	X_{2}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
40	X_{2}	12	0	1	$8 / 25$	0	$-3 / 25$	0
0	$\mathrm{~S}_{2}$	8	0	0	$-8 / 25$	1	$3 / 25$	0
0	$\mathrm{~S}_{4}$	17	0	0	$3 / 25$	0	$2 / 25$	1
50	X_{1}	30	1	0	$-5 / 25$	0	$5 / 25$	0
	Z_{j}	1980	50	40	$14 / 5$	0	$26 / 5$	0
	$\mathrm{C}_{\mathrm{j}}-\mathrm{Z}_{\mathrm{j}}$		0	0	$-14 / 5$	0	$-26 / 5$	0

It turns out that the optimal solution has been reached. ($\mathrm{All} \mathrm{C}_{\mathrm{j}}-\mathrm{Z}_{\mathrm{i}} \leq 0$ and all artificial variables have been eliminated.)

- Simply add an artificial variable A1 to create a basic feasible solution in the initial simplex tableau.
$6 \mathrm{X} 1+4 \mathrm{X} 2-5 \mathrm{X} 3=30 \Rightarrow 6 \mathrm{X} 1+4 \mathrm{X} 2-5 \mathrm{X} 3+1 \mathrm{~A} 1=30$
- One of the properties of the tableau form of a linear program is that the values on the right-hand sides of the constraints have to be nonnegative.
- e.g. \# of units of the portable model (X2) has to be less than or equal to the \# of units of the deskpro model (X1) after setting aside 5 units of the deskpro for internal company use.

$$
X 2 \leq X 1-5
$$

$>-\mathrm{X} 1+\mathrm{X} 2 \leq-5$

- (Min)Multiply by $-1 \Rightarrow$ (Max) X1 - X2 ≥ 5
- We now have an acceptable nonnegative right-hand-side value. Tableau form for this constraint can now be obtained by subtracting a surplus variable and adding an artificial variable.

Tabular solution for Example 5/1

- Livestock Nutrition Co. produces specially blended feed supplements. LNC currently has an order for 200 kgs of its mixture.
- This consists of two ingredients
X_{1} (a protein source)
X_{2} (a carbohydrate source)
- The first ingredient, X_{1} costs LNC 3MU a kg. The second ingredient, X_{2} costs LNC 8MU a kg . The mixture can't be more than $40 \% \mathrm{X}_{1}$ and it must be at least $30 \% \mathrm{X}_{2}$.
- LNC's problem is to determine how much of each ingredient to use to minimize cost.

Tabular solution for Example 5/2

- The cost function can be written as Cost $=3 \mathrm{X}_{1}+8 \mathrm{X}_{2}$ Min!
- LNC must produce 200 kgs of the mixture - no more, no less.
$X_{1}+X_{2}=200 \mathrm{kgs}$
- The mixture can't be more than $40 \% X_{1}$, so we may use less than 80 kgs . (40% 200 ${ }^{1}=80$). However, we must not exceed 80 kgs .
$X_{1} \leq 80 \mathrm{kgs}$
- The mixture must be at least $30 \% X_{2}$.Thus we may use more than 60 kgs , not less than 60 kgs. $(30 \% \times 200=60)$
- $X_{2} \geq 60 \mathrm{kgs}$

Tabular solution for Example 5/3

Minimize: Cost = 3MU X1 + 8MU X2
Subject to X1 + X2 = 200 kgs

$$
\begin{aligned}
& \mathrm{X} 1 \leq 80 \mathrm{kgs} \\
& \mathrm{X} 2 \geq 60 \mathrm{kgs} \\
& \mathrm{X} 1, \mathrm{X} 2 \geq 0
\end{aligned}
$$

- An initial solution: X1 + X2 = 200 kgs

$$
\Rightarrow \mathrm{X} 1+\mathrm{X} 2+\mathrm{A} 1=200
$$

- Artificial variable : A very expensive substance must not be represented in optimal solution.

Tabular solution for Example 5/4

- An artificial Variable is only of value as a computational device; it allows 2 types of restrictions to be treated.
- The equality type
$>\geq$ type
- $\mathrm{X}_{1} \leq 80$ kgs constraint on protein
$\Rightarrow \mathrm{X}_{1}+\mathrm{S}_{1}=80 \mathrm{kgs}$
$X_{2} \geq 60$ kgs constraint on carbohydrates
$\Rightarrow \mathrm{X} 2-\mathrm{S} 2+\mathrm{A} 2=60$
- $\mathrm{X} 1, \mathrm{X} 2, \mathrm{~S} 1, \mathrm{~S} 2, \mathrm{~A} 1, \mathrm{~A} 2 \geq 0$
$\Downarrow \Downarrow \Downarrow \downarrow$
OMU OMU M M

Tabular solution for Example 5/5

Minimize: Cost $=3 X 1+8 X 2+0 S 1+0 S 2+$ MA1 + MA2
$\begin{array}{rrrr}\text { Subject to: } \mathrm{X} 1+\begin{array}{l}\mathrm{X} 2 \\ \mathrm{X} 1 \\ \mathrm{~S} 1\end{array} \mathrm{~A} 1 & =200 \\ \mathrm{X} 2 & -\mathrm{S} 2 & +\mathrm{A} 2 & =60\end{array}$
All variables ≥ 0

Tabular solution for Example 5/6

田 Initial Tableau

Ci_{1}			$\begin{gathered} 3 \\ M \mathrm{MJ} \end{gathered}$	$\begin{gathered} 8 \\ \mathrm{MU} \end{gathered}$	$\begin{gathered} \mathrm{M} \\ \mathrm{MJ} \end{gathered}$	$\begin{gathered} 0 \\ M O \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{MU} \end{gathered}$	$\begin{gathered} \mathrm{M} \\ \mathrm{MJ} \end{gathered}$	
	Product mix	Quantity b_{i}	X_{1}	X_{2}	A_{1}	S_{1}	S_{2}	A_{2}	$\mathrm{b}_{\mathrm{i}} / \mathrm{a}_{\mathrm{ij}}$
M	A_{1}	200	1	1	1	0	0	0	$20011=200$
0	Sl	80	1	0	0	1	0	0	--
M	A_{2}	60	0	1	0	0	-1	1	$601=60$ Min . epplaced fow
	Z ${ }_{\text {i }}$	260 M	M	2 M	M	0	-M	M	
	$\mathrm{C}_{\mathrm{j}}-\mathrm{Z}_{\mathrm{i}}$		3-M	$8-2 \mathrm{M}$	0	0	M	0	

Tabular solution for Example 5/7

Computation for $2^{\text {nd }}$ tableau:
Replacing tow $=$ new X_{2} values : $60 / 1=60,0 / 1=0,1 / 1=1,0 / 1=0,-1 / 1=1,1 / 1=1$

Old Alrow	-	key \#	x	new $\mathrm{X}_{\mathbf{4}}$ values	=	new A_{1} row
200	-	1	X	60	=	140
1	-	1	X	0	=	1
1	-	1	x	1	=	0
1	-	1	x	0	=	1
0	-	1	x	0	=	0
0	-	1	X	-1	=	1
0	-	1	x	1	=	-1
Old Slrow	-	key \#	x	new Xowalues	=	new Sl row
80	-	0	x	60	=	80
1	-	0	x	0	=	1
0	-	0	x	1	=	0
0	-	0	x	0	=	0
1	-	0	x	0	=	1
0	-	0	x	-1	=	0
0	-	0	x	1	$=$	0

Tabular solution for Example 5/8

Tabular solution for Example 5/9

Computations for $3^{\text {rd }}$ Tableau
Replacing row $=$ new X_{1} values: $80 / 1=80,1 / 1=1,0 / 1=0,0 / 1=0,1 / 1=1,0 / 1=0,0 / 1=0$

Old Al_{1} row	-	key \#	x	new X_{1} values	=	new A_{1} row
140	-	1	x	80	$=$	60
1	-	1	x	1	=	0
0	-	1	x	0	=	0
1	-	1	x	0	=	1
0	-	1	x	1	=	-1
1	-	1	x	0	=	1
-1	-	1	x	0	=	-1
Old X_{2} row	-	key \#	x	new X_{1} values	=	new X_{2} row
60	-	0	x	80	=	60
0	-	0	x	1	=	0
1	-	0	x	0	=	1
0	-	0	x	0	$=$	0
0	-	0	x	1	=	0
-1	-	0	x	0	=	-1
1	-	0	x	0	=	1

Tabular solution for Example 5/10

团 ${ }^{3 \mathrm{xd} \text { Tableau }}$									
C_{j}			3	8	M	0	0	M	
	Product mix	Quantity bi	X_{1}	X_{2}	A_{1}	S_{1}	S_{2}	A_{2}	$\mathrm{b}_{\mathrm{i}} / \mathrm{a}_{\mathrm{ij}}$
M	Al_{1}	60	0	0	1	-1	1	T	$60: 1=60$ replaced row
3	X_{1}	80	1	0	0	1	0	0	$8000=-$
8	X_{2}	60	0	1	0	0	-1		$60 \%-1=-60$ not considered
	Z	60M-720	3	8	M	3-M	M-8	$8-\mathrm{M}$	
	$\mathrm{Cj}-\mathrm{Zj}$		0	0	0	M-3	$8-\mathrm{M}$	2M-8	

Tabular solution for Example 5/11

Computations for the $4^{\text {th }}$ Tableau
Replacing row $=$ new S_{2} values: $60 / 1=60,0 / 1=0,0 / 1=0,1 / 1=1,-1 / 1=-1,1 / 1=1,-1 / 1=-1$

Old X X_{1} row	-	key \#	x	new. S_{2} values	$=$	new X_{1} row
80	-	0	x	60	$=$	80
1	-	0	x	0	=	1
0	-	0	x	0	$=$	0
0	-	0	x	1	=	0
1	-	0	x	-1	=	1
0	-	0	x	1	=	0
0	-	0	x	-1	=	0
Old X_{2} row	-	key \#	x	new ${ }^{\text {S }}$ 2 values	=	new X_{2} row
60	-	-1	x	60	=	120
0	-	-1	x	0	=	0
1	-	-1	x	0	=	1
0	-	-1	x	1	=	1
0	-	-1	x	-1	=	-1
-1	-	-1	x	1	=	0
1	-	-1	x	-1	=	0

Tabular solution for Example 5/12

$4^{\text {th }}$ Tableau

Cj			3	8	M	0	0	M
	Product mix	Quantity bi	X_{1}	X_{2}	$\mathrm{~A}_{1}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~A}_{2}$
0	$\mathrm{~S}_{2}$	60	0	0	1	-1	1	-1
3	X_{1}	80	1	0	0	1	0	0
8	X_{2}	120	0	1	1	-1	0	0
	Z_{j}	1200	3	8	8	-5	0	0
	$\mathrm{C}_{\mathrm{i}}-\mathrm{Z}_{\mathrm{j}}$		0	0	$\mathrm{M}-8$	5	0	M

\because No negative values remain in the $\mathrm{Cj}-\mathrm{Zj}$ row, we have reached the OPTMMAL solution.

It is to use 80 kgs of X_{1} and 120 kgs of X_{2}. This results in a cost of 1200 MU . S_{2} represents the amount of X_{2} used over the minimum quantity required (60 kg)

$$
X_{2}-S_{2}+A_{2}=60 \rightarrow 120-60+0=60 \rightarrow 60=60 \because A_{2}=0
$$

