Game Theor

- Game Theory
- Decision Theory
- Markov Game
- Markov Decision Processes
- Conclusion

Game Theory (1/3)

Game theory is a branch of economics.
 von Neumann, J. and Morgenstern, O. "Theory of Games and Economic Behavior," Princeton University Press, 1944.

Game theory (for modeling cooperation and competition in multi-agent system).

Game Theory (2/3)

Key assumption Players are rational Players choose their strategies solely to promote their own welfare (no compassion for the opponent) Goal: To find an equilibrium: Requilibrium: local optimum in the space of policies

Game Theory (3/3)

The elements of such a game include:
 Players (Agents) : decision makers in the game
 Strategies : predetermined rules that tell a player which action to take at each stage of the game
 Payoffs (table) : utilities (dollars) that each player realizes for a particular outcome

Equilibrium : stable results. Here stable results mean that each player behaves in the desired manner and will not change its decision.

Prisoners Dilemma

Example

Value of the game, Saddle-point, Nash Equilibrium

Classification of Game Theory

Two-person, zero-sum games

 One player wins = The other one loses

 Two-person, constant-sum games
 N-person game
 Nonzero-sum game

- Game Theory
- Decision Theory
- Markov Game
- Markov Decision Processes
- Conclusion

Decision Theory (1/2)

 Probability Theory

Describes what an agent should believe based on evidence.

Utility Theory Describes what an agent wants.

 Decision Theory Describes what an agent should do.

Decision Theory (2/2)

The decision maker needs to choose one of the possible actions

 Each combination of an action and a state of nature would result in a payoff (table)

This payoff table should be used to find an optimal action for the decision maker according to an appropriate criterion

- Game Theory
- Decision Theory
- Markov Game
- Markov Decision Processes
- Conclusion

Markov Game

 Markov games is an extension of game theory to MDP like environments

Markov game assumption such that the decisions of users are only based on the current state

- Game Theory
- Decision Theory
- Markov Game
- Markov Decision Processes
- Conclusion

Markov Decision Processes (1/2)

- Markov decision processes (MDPs) theory has developed substantially in the last three decades and become an established topic within many operational research.
- Modeling of (infinite) sequence of recurring decision problems (general behavioral strategies)
- MDPs defined
 - - Utility function
 - Revenue
 - ca Cost
 - Rev Policies
 - Set of decision
 Quantic (MDPs)

Markov Decision Processes (2/2)

- Three components: Initial state, transition model, reward function
- Policy: Specifies what an agent should do in every state
- Optimal policy: The policy that yields the highest expected utility

MDP vs. MG

 Single agent: Markov Decision Process
 MDP is capable of describing only single-agent environments

Multi-agent: Markov Game

n-player Markov Gameoptimal policy: Nash equilibrium

- Game Theory
- Decision Theory
- Markov Game
- Markov Decision ProcessesConclusion

Conclusion

Markov property

Markov Decision Processes (MDP)

Markov Game

Generally

Decision Theory

Game Theory

Single-agent

Multi-agents

References (1/3)

- 1. Hamdy A. Taha, "Operations Research: an Introduction," third edition, 1982.
- 2. Hillier and Lieberman,"Introduction to Operations Research," fourth edition, Holden-Day, Inc, 1986.
- 3. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, "Network Flows," Prentice-Hall, 1993.
- 4. Leslie Pack Kaelbling, "Techniques in Artificial Intelligence: Markov Decision Processes," <u>MIT OpenCourseWare</u>, Fall 2002.
- 5. Ronald A. Howard, "Dynamic Programming and Markov Processes," Wiley, New York, 1970.
- 6. D. J. White, "Markov Decision Processes," Wiley, 1993.
- 7. Dean L. Isaacson and Richard W. Madsen, "Markov Chains Theory and Applications," Wiley, 1976
- 8. M. H. A. Davis "Markov Models and Optimization," Chapman & Hall, 1993.
- 9. Martin L. Puterman, "Markov Decision Processes: Discrete Stochastic Dynamic Programming," Wiley, New York, 1994.
- 10. Hsu-Kuan Hung, Adviser : Yeong-Sung Lin ,"Optimization of GPRS Time Slot Allocation", June, 2001.
- Hui-Ting Chuang, Adviser : Yeong-Sung Lin , "Optimization of GPRS Time Slot Allocation Considering Call Blocking Probability Constraints", June, 20/2

References (2/3)

12. 高孔廉,「作業研究--管理決策之數量方法」,三民總經銷,民國74年四版。

- 13. 李朝賢,「作業研究概論」,弘業文化實業股份有限公司出版,民國66年8月。
- 14. 楊超然,「作業研究」,三民書局出版,民國66年9月初版。
- 15. 葉若春,「作業研究」,中興管理顧問公司出版,民國86年8月五版。
- 16. 薄香萍,「作業研究決策分析」,復文書局發行,民國78年6月初版。
- 17. 葉若春,「線性規劃理論與應用」,民國73年9月增定十版。
- 18. Leonard Kleinrock, "Queueing Systems Volume I: Threory," Wiley, New York, 1975.
- 19. Chiu, Hsien-Ming, "Lagrangian Relaxation," Tamkang University, Fall 2003.
- 20. L. Cheng, E. Subrahmanian, A. W. Westerberg, "Design and planning under uncertainty: issues on problem formulation and solution", Computers and Chemical Engineering, 27, 2003, pp.781-801.
- 21. Regis Sabbadin, "Possibilistic Markov Decision Processes", Engineering Application of Artificial Intelligence, 14, 2001, pp.287-300.
- 22. K. Karen Yin, Hu Liu, Neil E. Johnson, "Markovian Inventory Policy with Application to the Paper Industry", Computers and Chemical Engineering, 26, 2002, pp.1399-1413.

References (3/3)

- 23. Wal, J. van der. "*Stochastic Dynamic Programming*," Mathematical Centre Tracts No. 139, Mathematisch Centrum, Amsterdam, 1981.
- 24. Von Neumann, J. and Morgenstern, O. "*Theory of Games and Economic Behavior,*" Princeton University Press, 1947.
- 25. Grahman Romp, "Game Theory :Introduction and Applications," Oxford university Press, 1997.
- 26. Straffin, Philip D. "Game Theory and Strategy," Washington :Mathematical Association of America, 1993.
- 27. Watson, Joel. "Strategy : An Introduction to Game Theory ," New York : W.W. Norton, 2002.