Theory of Production

Production

THE THEORY OF PRODUCTION

- Production theory forms the foundation for the theory of supply
- Managerial decision making involves four types of production decisions:

1. Whether to produce or to shut down
2. How much output to produce
3. What input combination to use
4. What type of technology to use

Two Concepts of Efficiency

- Economic efficiency:
- occurs when the cost of producing a given output is as low as possible
- Technological efficiency:
- occurs when it is not possible to increase output without increasing inputs

Production Function

- A production function is a table or a mathematical equation showing the maximum amount of output that can be produced from any specified set of inputs, given the existing technology

Improvement of technology

$$
\mathbf{f}_{0}(\mathbf{x})-\mathbf{f}_{2}(\mathbf{x})
$$

$$
\begin{aligned}
Q & =\text { output } \\
x & =\text { inputs }
\end{aligned}
$$

Production Function continued

$$
\mathrm{Q}=\mathrm{f}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{k}}\right)
$$

where
$\mathrm{Q}=$ output
$X_{1}, \ldots, X_{k}=$ inputs
For our current analysis, let's reduce the inputs to two, capital (K) and labor (L):

$$
Q=f(L, K)
$$

Background to Supply

The Short-run Theory of Production

SHORT-RUN THEORY OF PRODUCTION

- The law of diminishing returns
- The short-run production function:
- total physical product (TPP)
- average physical product (APP)

$$
A P P=T P P / Q_{V}
$$

- marginal physical product (MPP)

$$
M P P=\Delta T P P / \Delta Q_{V}
$$

Wheat production per year from a particular farm (tonnes)
Number of TPP
Workers (Lb)

0	0
1	3
2	10
3	36
4	40
5	42
6	42
7	40
8	
$\mathbf{7}$	

Wheat production per year from a particular farm (tonnes)
Number of
Workers (Lb) \quad TPP $\quad \begin{gathered}\text { APP } \\ \text { (=TPP/Lb) }\end{gathered}$

TPP | (=TPP/Lb) |
| :---: |

0	0	-
1	3	3
2	10	5
3	24	8
4	36	9
5	40	8
6	42	7
7	42	6
8	40	5

Wheat production per year from a particular farm (tonnes)

Number of TPP APP
Workers (Lb)
(=TPP/Lb) (= \quad TPPP/ $\triangle L b$)

0	0	-	3
1	3	3	7
2	10	5	14
3	24	8	12
4	36	9	4
5	40	8	2
6	42	7	0
7	42	6	-2
8	40	5	

Wheat production per year from a particular farm (tonnes)
Number of TPP APP MPP
Workers (Lb)
(=TPP/Lb) (=ATPP/ $/$ Lb $)$

(a)	0	0	-	
				3
	1	3	3	
(b)				7
	2	10	5	
				14
	3	24	8	
(c)				12
	4	36	9	
				4
	5	40	8	
(d)				2
	6	42	7	
				0
	7	42	6	
				-2
	8	40	5	

Wheat production per year firom a particullar farimm

Wheat production per year firom a particullar faripm

Wheat production per year firrom a particullar farim

Wheat production per year firrom a particullar farim

Wheat production per year firom a particullar farm

Wheat production per year firrom a particullar farim

Wheat production per year firom a particullar farim

Short-Run and Long-Run Production

- In the short run some inputs are fixed and some variable
- e.g. the firm may be able to vary the amount of labor, but cannot change the capital
- in the short run we can talk about factor productivity
- In the long run all inputs become variable
- e.g. the long run is the period in which a firm can adjust al/ inputs to changed conditions
- in the long run we can talk about returns to scale

How to Determine the Optimal Input Usage

- We can find the answer to this from the concept of derived demand
- The firm must know how many units of output it could sell, the price of the product, and the monetary costs of employing various amounts of the input L
- Let us for now assume that the firm is operating in a perfectly competitive market for its output and its input

So let's Plot $\mathrm{TP}_{\mathrm{L}}, \mathrm{MP}_{\mathrm{L}}$ and $\mathbf{A P _ { L }}$ at one Graph

Q_{L}	TP_{L}	MP_{L}	AP_{L}
1	10	10	10
2	25	15	12.5
3	35	10	11.67
4	40	5	10
5	40	0	8
6	35	-5	5.83

Three Stages of Production

Stages of Production

- Stage I - MP > AP and AP is rising,
- Stage II - MP < AP and AP is falling; MP > 0, and
- Stage III - AP is still falling; MP <0.
- Which stage do you think the typical firm will seek?

Law of Diminishing Returns (Diminishing Marginal Product)

Holding all factors constant except one, the law of diminishing returns says that:

- beyond some value of the variable input, further increases in the variable input lead to steadily decreasing marginal product of that input
- e.g. trying to increase labor input without also increasing capital will bring diminishing returns

Short Run Production Function

Units of Capital	Units of Labour	Total Output
20	0	0
20	1	30
20	2	40
20	3	47
20	4	53
20	5	58
20	6	62
20	7	65

Marginal Physical Product

- MPP is the extra output that can be produced by using one more unit of an input, holding all other inputs constant.

Example: MPP of Labour

Units of Capital	Units of Labour	Output	Marginal Physical Product
20	0	0	
20	1	30	30
20	2	40	10
20	3	47	7
20	4	53	6
20	5	58	5
20	6	62	4
20	7	65	3

Diminishing returns to
labour

Example:

Note: $\quad \mathbf{P}=$ Product Price $=\$ 2$
$\mathrm{W}=$ Cost per unit of labor $=\$ 10000$ $\mathbf{M R P}=\mathbf{M P} \times \mathbf{P}$
TLC $=\mathbf{X x W}$
$\operatorname{MLC}=\Delta T L C / \Delta X$

Table 7.6 Combining Marginal Revenue Product (MRP) with Marginal Labor Cost (MLC)

				Total	Marginal	Total	Marginal			
Labor	Total	Average	Marginal	Revenue	Revenue	Labor	Labor			
Unit	Product	Product	Product	Product	Product	Cost	Cost			
(X)	(Qor TP)	(AP)	(MP)	(TRP)	(MRP)	(TLC)	(MLC)	TRP-TLC	MRP-MLC	
0	0		0	0		0		0	0	
1	10000	10000	10000	20000	20000	10000	10000	10000	10000	
2	25000	12500	15000	50000	30000	20000	10000	30000	20000	
3	45000	15000	20000	90000	40000	30000	10000	60000	30000	
4	60000	15000	15000	120000	30000	40000	10000	80000	20000	
5	70000	14000	10000	140000	20000	50000	10000	90000	10000	
6	75000	12500	5000	150000	10000	60000	10000	90000	0	
7	78000	11143	3000	156000	6000	70000	10000	86000	-4000	
8	80000	10000	2000	160000	4000	80000	10000	80000	-6000	

Optimal Use of the lariable Input

Marginal Revenue Product of Labor

$$
M R P_{L}=\left(M P_{L}\right)(M R)
$$

Marginal Resource Cost of Labor

$$
\mathrm{MRC}_{\mathrm{L}}=\frac{\Delta \mathrm{TC}}{\Delta \mathrm{~L}}
$$

Optimal Use of Labor $\mathrm{MRP}_{\mathrm{L}}=\mathrm{MRC}_{\mathrm{L}}$

Optimal Decision Rule:

A profit maximizing firm operating in perfectly competitive output and input markets will be using optimal amount of an input at the point at which the monetary value of the input's marginal product is equal to the additional cost of using that input (L)

- in other words, when MRP = MLC

